PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Opioid Agonists

    BOXED WARNING

    Accidental exposure, alcoholism, depression, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

    Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, including the use of extended-release/long-acting opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed opioids. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids, but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing an opioid. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Abuse or misuse of oxycodone extended-release tablets or capsules by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of oxycodone and can result in overdose and death. Parenteral abuse of RoxyBond tablets can be expected to result in local tissue necrosis, infection, pulmonary granulomas, and increased risk of endocarditis and valvular heart injury. Dosing errors may result from confusion between mg and mL when prescribing, dispensing, and administering oxycodone oral solution. Ensure that the dose is communicated clearly and dispensed accurately. Instruct patients on how to measure the dose and to use a calibrated oral dosing device. Keep opioids out of the reach of pediatric persons, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid dose increases, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Extended-release opioids are not intended for use in the management of acute pain or on an as-needed basis but rather only for the management of severe and persistent pain that requires an extended treatment period with a daily opioid and for which alternative treatment options are inadequate. Discuss the availability of naloxone with all persons and consider prescribing it in persons who are at increased risk of opioid overdose, such as persons who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

    Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, respiratory depression, respiratory insufficiency, sleep apnea

    Oxycodone is contraindicated in persons with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Oxycodone immediate-release tablets are contraindicated in persons with hypercarbia; receipt of moderate oxycodone doses in these persons may significantly decrease pulmonary ventilation. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring is required, particularly when CYP450 3A4 inhibitors or inducers are used concomitantly; concurrent use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma oxycodone concentrations and potentiate the risk of fatal respiratory depression.

    Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

    Pregnancy exposure data are insufficient to inform a drug-associated risk of birth defects or miscarriage with oxycodone. In animal studies with rats and rabbits, no embryo-fetal toxicity was detected when oxycodone was given during organogenesis at doses 0.5- to 15-times the adult human dose of 160 mg/day. In a pre- and post-natal study in rats, oxycodone given during gestation and lactation at a dose approximately 0.4 times an adult human dose of 160 mg/day was not associated with any long-term developmental or reproductive adverse effects in pups; however, pup weight was transiently decreased during lactation and the early post-weaning period. No drug-related effects on reproductive performance in female rats were observed. Published data with rats indicate that oxycodone may result in neurobehavioral effects, including altered stress response, increased anxiety-like behavior, and altered learning and memory, in offspring when given at clinically relevant doses and below. Oxycodone is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]

    DEA CLASS

    Rx, OTC, schedule II

    DESCRIPTION

    Phenanthrene opioid agonist
    Used for moderate to severe pain
    Some products formulated to deter abuse by inhalation or injection

    COMMON BRAND NAMES

    Dazidox, Endocodone, ETH-Oxydose, Oxaydo, OxyContin, Oxydose, OxyFast, OxyIR, Percolone, Roxicodone, Roxybond, XTAMPZA

    HOW SUPPLIED

    Dazidox/Endocodone/Oxaydo/Oxycodone/Oxycodone Hydrochloride/Percolone/Roxicodone/Roxybond Oral Tab: 5mg, 7.5mg, 10mg, 15mg, 20mg, 30mg
    ETH-Oxydose/Oxycodone/Oxycodone Hydrochloride/Oxydose/OxyFast/Roxicodone Oral Sol: 1mL, 5mg, 5mL, 20mg
    Oxycodone/Oxycodone Hydrochloride/OxyContin Oral Tab ER: 10mg, 15mg, 20mg, 30mg, 40mg, 60mg, 80mg
    Oxycodone/Oxycodone Hydrochloride/OxyIR Oral Cap: 5mg
    XTAMPZA Oral Cap ER: 9mg, 13.5mg, 18mg, 27mg, 36mg

    DOSAGE & INDICATIONS

    For the treatment of severe pain where treatment with an opioid is appropriate and for which alternative treatments are inadequate.
    For the treatment of severe pain where treatment with an opioid is appropriate and for which alternative treatments are inadequate.
    Oral dosage (immediate-release capsules, tablets, and oral solution)
    Adults

    5 to 15 mg PO every 4 to 6 hours as needed. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    Children† and Adolescents†

    0.05 to 0.2 mg/kg/dose PO every 4 to 6 hours as needed. Usual Initial Max: 5 mg/dose; however, higher initial doses (i.e., 10 mg/dose) may be appropriate. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    Infants†

    0.05 to 0.125 mg/kg/dose PO every 4 to 6 hours as needed. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days.

    For the treatment of persistent, severe pain that requires an extended treatment period with a daily opioid and for which alternative treatments are inadequate.
    NOTE: Extended-release oxycodone should be reserved for patients in whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would otherwise provide inadequate pain management. Discontinue all other around-the-clock opioid drugs upon initiation of oxycodone extended-release tablets or capsules.
    NOTE: Extended-release oxycodone 60 or 80 mg tablets, a single tablet dose more than 40 mg, or a total tablet daily dose more than 80 mg should be reserved for opioid-tolerant patients. A single extended-release oxycodone capsule dose of 36 mg (equivalent to 40 mg oxycodone hydrochloride) or more or a total capsule daily dose of 72 mg (equivalent to 80 mg oxycodone hydrochloride) or more should be reserved for opioid-tolerant patients. Adult patients who are opioid tolerant are those receiving, for a minimum of 1 week, 60 mg or more oral morphine daily, 30 mg or more oral oxycodone daily, 8 mg or more oral hydromorphone daily, 25 mg or more oral oxymorphone daily, 25 mcg or more transdermal fentanyl per hour, 60 mg or more oral hydrocodone per day, or an equivalent dose of another opioid. Extended-release oxycodone tablets should only be used in pediatric patients 11 years or older receiving opioids for at least 5 consecutive days and taking a minimum of 20 mg per day of oxycodone or its equivalent for 2 days immediately preceding dosing with extended-release oxycodone.
    Oral dosage (extended-release tablet, Oxycontin or generic equivalents) for use as the first opioid analgesic or in patients who are not opioid-tolerant
    Adults

    10 mg PO every 12 hours. Reduce the starting dose to one-third to one-half the usual dosage in debilitated, nonopioid-tolerant patients. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days.

    Oral dosage (extended-release tablet, Oxycontin or generic equivalents) for conversion from other oral oxycodone formulations
    Adults

    Convert to an equivalent total daily oxycodone dose and divide the 24-hour oxycodone requirements into 2 equal doses given PO every 12 hours. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days.

    Children and Adolescents 11 to 17 years

    Use only in patients receiving opioids for 5 or more consecutive days and taking 20 mg/day or more of oxycodone or its equivalent for 2 days immediately preceding dosing. Convert to an equivalent total daily oxycodone dose and divide the 24-hour oxycodone requirements into 2 equal doses given PO every 12 hours. If rounding is necessary, always round the dose down to the nearest available tablet strength. If the calculated dose is less than 20 mg/dose, there is no safe strength for conversion; do not initiate extended-release oxycodone. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% every 1 to 2 days as needed.

    Oral dosage (extended-release tablet, Oxycontin or generic equivalents) for conversion from fentanyl transdermal patch
    Adults

    10 mg PO every 12 hours for each 25 mcg/hour fentanyl transdermal patch beginning 18 hours after removal of the fentanyl transdermal patch. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days.

    Children and Adolescents 11 to 17 years

    Limited data in pediatric patients. Use only in patients receiving opioids for 5 or more consecutive days and taking 20 mg/day or more of oxycodone equivalent for 2 days immediately preceding dosing. 10 mg PO every 12 hours for each 25 mcg/hour fentanyl transdermal patch beginning at least 18 hours after removal of the fentanyl transdermal patch. If rounding is necessary, always round the dose down to the nearest available tablet strength. If the calculated dose is less than 20 mg/dose, there is no safe strength for conversion; do not initiate extended-release oxycodone. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% every 1 to 2 days.

    Oral dosage (extended-release tablet, Oxycontin or generic equivalents) for conversion from other opioid agonist analgesics
    Adults

    10 mg PO every 12 hours. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days. Use extreme caution when converting patients from methadone as the ratio between methadone and other opioid agonists can vary widely.

    Children and Adolescents 11 to 17 years

    Use only in patients receiving opioids for 5 or more consecutive days and taking 20 mg/day or more of oxycodone or its equivalent for 2 days immediately preceding dosing. To convert to extended-release oxycodone, calculate the 24-hour opioid requirement and multiply this amount by the conversion factor provided in the FDA-approved labeling. The conversion factors are as follows: 0.9 for oral hydrocodone, 4 for oral hydromorphone, 20 for parenteral hydromorphone, 0.5 for oral morphine, 3 for parenteral morphine, 0.17 for oral tramadol, and 0.2 for parenteral tramadol. For patients receiving high-dose parenteral opioids, a more conservative conversion is warranted; for example, use a conversion factor of 1.5 instead of 3 for patients receiving high-dose parenteral morphine. Divide the calculated total daily dose into 2 equal doses given PO every 12 hours. If rounding is necessary, always round the dose down to the nearest available tablet strength. If the calculated dose is less than 20 mg/dose, there is no safe strength for conversion; do not initiate extended-release oxycodone. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% every 1 to 2 days.

    Oral dosage (extended-release capsule, Xtampza ER) for use as the first opioid analgesic or in patients who are not opioid-tolerant
    Adults

    9 mg PO every 12 hours. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days. Use an alternate analgesic for patients who require a dose less than 9 mg.

    Oral dosage (extended-release capsule, Xtampza ER) for conversion from other oral oxycodone formulations
    Adults

    Convert to an equivalent total daily oxycodone dose and divide the 24-hour oxycodone requirements into 2 equal doses given PO every 12 hours. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days. Because extended-release capsules are not bioequivalent to other extended-release oxycodone products and the relative bioavailability of immediate-release oxycodone products to extended-release oxycodone is unknown, monitor patients for possible dosage adjustment. Use an alternate analgesic for patients who require a dose less than 9 mg.

    Oral dosage (extended-release capsule, Xtampza ER) for conversion from fentanyl transdermal patch
    Adults

    9 mg PO every 12 hours for each 25 mcg/hour fentanyl transdermal patch beginning 18 hours after removal of the fentanyl transdermal patch. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days. Use an alternate analgesic for patients who require a dose less than 9 mg.

    Oral dosage (extended-release capsule, Xtampza ER) for conversion from other opioid agonist analgesics
    Adults

    9 mg PO every 12 hours. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Titrate the total daily oxycodone dose by 25% to 50% every 1 to 2 days. Use extreme caution when converting patients from methadone as the ratio between methadone and other opioid agonists can vary widely. Use an alternate analgesic for patients who require a dose less than 9 mg.

    For the treatment of painful diabetic neuropathy†.
    Oral dosage (extended-release tablets, e.g., Oxycontin or generic equivalent)
    Adults

    10 mg PO every 12 hours initially. Titrate dosage every 2 to 7 days up to a maximum of 120 mg/day PO, given in divided doses. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. The American Academy of Neurology guidelines consider extended-release oxycodone as probably effective in lessening the pain of diabetic neuropathy.

    For the treatment of refractory restless legs syndrome (RLS)†.
    Oral dosage (immediate-release)
    Adults

    5 to 10 mg/day PO once daily or in divided doses, initially. Titrate based on efficacy and adverse effects. Usual dose: 10 to 30 mg/day. Testing initial response with a short-acting opioid may be reasonable, but longer-acting and controlled-release drugs are preferred, especially at night because short-acting opioids may not provide adequate length of coverage and may be associated with end-of-dose rebound of symptoms. Shorter-acting opioids may be appropriate during the day when symptoms may be less severe.

    Oral dosage (extended-release)
    Adults

    5 to 10 mg/day PO once daily or in divided doses, initially. Titrate based on efficacy and adverse effects. Usual dose: 10 to 30 mg/day. Longer-acting and controlled-release drugs are preferred, especially at night.  

    †Indicates off-label use

    MAXIMUM DOSAGE

    Adults

    Immediate-release dosage forms, extended-release tablets: There is no maximum dose of oxycodone; however, careful titration of oxycodone, especially in opiate-naive patients, is required until tolerance develops to some of the side effects (i.e., drowsiness and respiratory depression). Individualize dosage carefully.
    Extended-release capsules (Xtampza ER): 288 mg/day PO (equivalent to 320 mg/day oxycodone hydrochloride).

    Geriatric

    Immediate-release dosage forms, extended-release tablets: There is no maximum dose of oxycodone; however, careful titration of oxycodone, especially in opiate-naive patients, is required until tolerance develops to some of the side effects (i.e., drowsiness and respiratory depression). Individualize dosage carefully.
    Extended-release capsules (Xtampza ER): 288 mg/day PO (equivalent to 320 mg/day oxycodone hydrochloride).

    Adolescents

    Extended-release tablets: With appropriate dosage titration, there is no maximum dose of extended-release oxycodone in opioid-tolerant pediatric patients; however, careful titration is required until tolerance develops to some of the side effects (i.e., drowsiness and respiratory depression). Individualize dosage carefully.
    Immediate-release dosage forms and extended-release capsules (Xtampza ER): Safety and efficacy have not been established.

    Children

    Extended-release tablets in Children 11 years or older: With appropriate dosage titration, there is no maximum dose of extended-release oxycodone in opioid-tolerant pediatric patients; however, careful titration is required until tolerance develops to some of the side effects (i.e., drowsiness and respiratory depression). Individualize dosage carefully.
    Extended-release tablets in Children younger than 11 years, immediate-release dosage forms, and extended-release capsules (Xtampza ER): Safety and efficacy have not been established.

    Infants

    Safety and efficacy have not been established.

    Neonates

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Start initial therapy at one-third to one-half the normal dose and titrate dose carefully. Patients with hepatic impairment have higher plasma oxycodone and noroxycodone and lower oxymorphone concentrations than those with normal hepatic function.

    Renal Impairment

    Conservative initial dose and dose titration are required. Dosage should be modified depending on clinical response and degree of renal impairment. In patients with CrCl less than 60 mL/minute, the serum concentration of oxycodone is about 50% higher than in patients with normal renal function.

    ADMINISTRATION

    Oral Administration

    Oxycodone should be titrated from the initial recommended dosage to the dose required to relieve the patient's pain and minimize adverse reactions.
    There is no maximum dose of oxycodone; however, careful titration is required to avoid adverse reactions (i.e., drowsiness and respiratory depression).
    Storage: Keep oxycodone secured in a location not accessible by others.
    Disposal: Flush unused oxycodone down the toilet when it is no longer needed if a drug take-back option is not readily available.

    Oral Solid Formulations

    Immediate-release tablets:
    May be administered with food or milk to minimize GI irritation.
    Oxecta and Oxaydo brand tablets: Swallow whole; do not crush or dissolve. Do not pre-soak, lick, or otherwise wet tablet prior to dose administration. Administer 1 tablet at a time; allow patient to swallow each tablet separately with sufficient liquid to ensure prompt and complete transit through the esophagus. Do not use this brand for administration via nasogastric, gastric, or other feeding tubes as it may cause obstruction of feeding tubes.
     
    Extended-release tablets (e.g., OxyContin):
    Administer whole; do not crush, chew, cut, dissolve, or break in half. Taking chewed, broken, cut, dissolved, or crushed extended-release tablets could lead to the rapid release and absorption of a potentially fatal dose of oxycodone.
    May be administered with or without food.
    Take with a full glass of water to ensure complete swallowing.
    In general, administer one-half of the patient's total daily dose every 12 hours. If asymmetric dosing is necessary, instruct patient to take the higher dose in the morning.
    Extended-release 60 mg and 80 mg tablets are for use ONLY in opioid-tolerant patients.
    Monitor patients closely for respiratory depression, particularly within the first 24 to 72 hours after initiation or dose escalation.
    OxyContin: Do not pre-soak, lick, or otherwise wet tablet prior to dose administration. Administer 1 tablet at a time; allow patient to swallow each tablet separately with sufficient liquid to ensure prompt and complete transit through the esophagus.
    Roxybond: The biologically inert components of this tablet may remain intact and appear as a tablet in the stool.
     
    Extended-release capsules (Xtampza ER):
    Always take with food and with approximately the same amount of food in order to ensure consistent plasma concentrations.
    The capsule contents may be taken by sprinkling the contents onto soft foods (e.g., applesauce, pudding, yogurt, ice cream, or jam) or into a cup and then giving directly into the mouth. Swallow immediately and rinse mouth to ensure all capsule contents have been swallowed. Discard capsule shells following administration.
    The capsule contents may be given through a nasogastric or gastrostomy tube. Flush the tube with water. Open a capsule and pour the contents directly into the tube. Do not pre-mix capsule contents with the liquid that will be used to flush the tube. Draw up 15 mL of water into a syringe, insert the syringe into the tube, and flush the contents through the tube. Repeat flushing twice using 10 mL of water with each flush. Milk or liquid nutritional supplement may be used as an alternative to water when flushing capsule contents through the tube.
    Extended-release 36 mg capsules are for use ONLY in opioid-tolerant patients.
    Monitor patients closely for respiratory depression, particularly within the first 24 to 72 hours after initiation or dose escalation.

    Oral Liquid Formulations

    Concentrated (20 mg/mL) solution:
    Always use the included oral syringe when administering the highly concentrated solution; take care in dispensing and administering this medication.
    For ease of administration, the concentrated solution may be added to 30 mL of a liquid or semi-solid food. If the medication is placed in liquid or food, the patient needs to immediately consume; do not store diluted oxycodone for future use.

    STORAGE

    Dazidox :
    - Protect from light
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Endocodone :
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    ETH-Oxydose:
    - Protect from light
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Oxaydo:
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    OXECTA:
    - Protect from moisture
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    OxyContin:
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    Oxydose :
    - Protect from light
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    OxyFast:
    - Protect from light
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    OxyIR:
    - Protect from light
    - Protect from moisture
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    Percolone:
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Roxicodone:
    - Protect from light
    - Protect from moisture
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    Roxybond:
    - Protect from moisture
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    XTAMPZA :
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Oxycodone is contraindicated in persons with oxycodone hypersensitivity. Anaphylaxis has been reported during postmarketing experience with oxycodone.

    Accidental exposure, alcoholism, depression, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

    Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, including the use of extended-release/long-acting opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed opioids. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids, but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing an opioid. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Abuse or misuse of oxycodone extended-release tablets or capsules by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of oxycodone and can result in overdose and death. Parenteral abuse of RoxyBond tablets can be expected to result in local tissue necrosis, infection, pulmonary granulomas, and increased risk of endocarditis and valvular heart injury. Dosing errors may result from confusion between mg and mL when prescribing, dispensing, and administering oxycodone oral solution. Ensure that the dose is communicated clearly and dispensed accurately. Instruct patients on how to measure the dose and to use a calibrated oral dosing device. Keep opioids out of the reach of pediatric persons, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid dose increases, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Extended-release opioids are not intended for use in the management of acute pain or on an as-needed basis but rather only for the management of severe and persistent pain that requires an extended treatment period with a daily opioid and for which alternative treatment options are inadequate. Discuss the availability of naloxone with all persons and consider prescribing it in persons who are at increased risk of opioid overdose, such as persons who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

    Acute abdomen, constipation, diarrhea, diverticulitis, dysphagia, esophageal stricture, gastric cancer, GI disease, GI obstruction, ileus, inflammatory bowel disease, ulcerative colitis

    Oxycodone is contraindicated in patients who have or are suspected of having GI obstruction, including paralytic ileus. Due to the effects of opioid agonists on the gastrointestinal tract, oxycodone should be used cautiously in patients with GI disease such as ulcerative colitis (UC). Patients with UC or other inflammatory bowel disease may be more sensitive to constipation caused by opioid agonists. Rarely, intestinal obstruction and exacerbation of diverticulitis requiring surgical intervention to remove the tablet has been reported with OxyContin tablets. Patients at greatest risk of developing these complications include those with underlying GI disease such as gastric cancer (i.e., esophageal cancer or colon cancer with small gastrointestinal lumen); use of alternative analgesics should be considered in these patients. Use the extended-release tablets and Oxecta immediate-release tablets with caution in patients with pre-existing esophageal stricture or dysphagia, as the tablets may swell when exposed to liquids including saliva; choking, gagging, and related events have been reported with postmarket use. Choking, gagging, regurgitation, and tablets getting stuck in the throat have also occurred with OxyContin; do not pre-soak, lick, or wet the tablet prior to ingestion. Do not use Oxecta immediate-release tablets in nasogastric, gastric, or other feeding tubes as obstruction may occur; never crush, cut, chew, break, or dissolve extended-release tablets. Opioid agonists may obscure the diagnosis or clinical course in patients with an acute abdomen. Opioid agonists may exacerbate cases of diarrhea secondary to poisoning or infectious diarrhea, as a reduction in GI motility may occur with use. Antimotility agents have been used successfully in these patients. If possible, opioid agonists should not be given until the toxic substance has been eliminated.

    Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, respiratory depression, respiratory insufficiency, sleep apnea

    Oxycodone is contraindicated in persons with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Oxycodone immediate-release tablets are contraindicated in persons with hypercarbia; receipt of moderate oxycodone doses in these persons may significantly decrease pulmonary ventilation. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring is required, particularly when CYP450 3A4 inhibitors or inducers are used concomitantly; concurrent use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma oxycodone concentrations and potentiate the risk of fatal respiratory depression.

    Opioid-naive patients, surgery

    To reduce the risk of life-threatening adverse effects, do not use oxycodone extended-release 60 mg and 80 mg tablets in opioid-naive patients; these patients should also not receive a single dose of extended-release tablets more than 40 mg or a total daily dose more than 80 mg. Similarly, do not use a single dose of oxycodone extended-release capsules more than 36 mg or a total daily dose more than 72 mg in opioid-naive patients. Use great caution when prescribing all other formulations of oxycodone in non-tolerant patients. Adult patients who are opioid tolerant are those receiving at least 60 mg oral morphine/day, 25 mcg transdermal fentanyl/hour, 30 mg oral oxycodone/day, 8 mg oral hydromorphone/day, 25 mg oral oxymorphone/day, 60 mg oral hydrocodone/day, or an equianalgesic dose of another opioid for 1 week or longer. Further, oxycodone extended-release tablets are not indicated for pain in the immediate postoperative period (the first 12 to 24 hours after surgery) unless the patient is already receiving oxycodone extended-release therapy, or if the pain is expected to be moderate to severe and persist for an extended period of time. Extended-release tablets or capsules should also not be used for the treatment of mild pain or pain that is not expected to persist for an extended period of time, acute pain, or as an as-needed (prn) analgesic. Reserve use of the extended-release tablets or capsules for patients in whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. Extended-release oxycodone tablets should only be used in opioid-tolerant pediatric patients 11 years or older who have received opioids for at least 5 consecutive days and are taking a minimum of 20 mg/day of oxycodone or its equivalent for 2 days immediately preceding dosing with extended-release oxycodone. The extended-release tablets must be swallowed whole and are not to be cut, broken, chewed, crushed, or dissolved. When the tablet is crushed or broken and/or if its contents are given by intravenous administration or snorted into the nostrils, the extended-release mechanism is defeated and a potentially lethal dose of oxycodone is immediately released.

    Biliary tract disease, pancreatitis

    As with other opioid agonists, oxycodone may cause spasm of the sphincter of Oddi. Biliary effects due to opioid agonists have resulted in increased serum amylase concentrations. Oxycodone should be used with caution in patients with biliary tract disease, including pancreatitis, or undergoing biliary tract surgery.

    Abrupt discontinuation

    Avoid abrupt discontinuation of oxycodone in a physically-dependent patient. When a patient who has been taking opioids regularly and may be physically dependent no longer requires therapy with oxycodone, taper the dose gradually while monitoring carefully for signs and symptoms of withdrawal. If the patient develops these signs or symptoms, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both. Consider tapering to reduced opioid dosage, or tapering and discontinuing long-term opioid therapy, when pain improves; the patient requests dosage reduction or discontinuation; pain and function are not meaningfully improved; the patient is receiving higher opioid doses without evidence of benefit from the higher dose; the patient has current evidence of opioid misuse; the patient experiences side effects that diminish quality of life or impair function; the patient experiences an overdose or other serious event (e.g., hospitalization, injury) or has warning signs for an impending event such as confusion, sedation, or slurred speech; the patient is receiving medications (e.g., benzodiazepines) or has medical conditions (e.g., lung disease, sleep apnea, liver disease, kidney disease, fall risk, advanced age) that increase risk for adverse outcomes; or the patient has been treated with opioids for a prolonged period and current benefit-harm balance is unclear. If the patient has a serious mental illness, is at high suicide risk, or has suicidal ideation, offer or arrange for consultation with a behavioral health provider before initiating a taper. In patients with opioid use disorder, offer or arrange for medication-assisted treatment. Individualize opioid tapering schedules. The longer the duration of previous opioid therapy, the longer the taper may take. Common tapers involve dose reduction of 5% to 20% every 4 weeks; a faster taper may be appropriate for some patients. Significant opioid withdrawal symptoms may indicate the need to pause or slow the taper. Opioids may be stopped, if appropriate, when taken less often than once daily. Advise patients that there is an increased risk for overdose on abrupt return to a previously prescribed higher dose; provide opioid overdose education, and consider offering naloxone. Monitor patients closely for anxiety, depression, suicidal ideation, and opioid use disorder, and offer support and referral as needed.

    Brain tumor, CNS depression, coma, head trauma, increased intracranial pressure, intracranial mass

    Avoid oxycodone use in persons with CNS depression, impaired consciousness, or coma; opioids may obscure the clinical course in a person with a head trauma injury. Monitor persons who may be susceptible to the intracranial effect of carbon dioxide retention (e.g., those with evidence of increased intracranial pressure, brain tumor, or intracranial mass) for signs of sedation and respiratory depression, particularly when initiating acetaminophen; oxycodone therapy. Oxycodone may reduce respiratory drive and resultant carbon dioxide retention can further increase intracranial pressure.

    Angina, cardiac arrhythmias, cardiac disease, dehydration, heart failure, hypotension, hypovolemia, orthostatic hypotension, shock

    Opioid agonists, such as oxycodone, produce cholinergic side effects (by stimulating medullary vagal nuclei) causing bradycardia and vasovagal syncope, and induce the release of histamine. In patients who are unable to maintain blood pressure due to hypovolemia or dehydration, or in those who concurrently receive other agents that compromise vasomotor tone (e.g., phenothiazines or general anesthetics), opioid agonists may induce peripheral vasodilatation and severe hypotension. These effects can cause problems in patients with cardiac disease (e.g., angina, heart failure). Oxycodone should be used with caution in patients with cardiac arrhythmias or orthostatic hypotension. Oxycodone should not be used in patients with circulatory shock.

    Bladder obstruction, hepatic disease, oliguria, prostatic hypertrophy, renal disease, renal failure, renal impairment, urethral stricture, urinary retention

    Oxycodone and other opioid agonists can cause urinary retention and oliguria, due to increasing the tension of the detrusor muscle. Patients more prone to these effects include those with prostatic hypertrophy, urethral stricture, bladder obstruction, pelvic tumors, or renal disease. Drug accumulation or prolonged duration of action may occur in patients with renal failure or hepatic disease. In acute situations, patients require close monitoring to avoid excessive toxicity. In patients with renal impairment (creatinine clearance less than 60 mL/minute), the concentrations of oxycodone are approximately 50% higher than patients with normal renal function. Dose initiation in these patients should be conservative and dosage adjustments based on individual patient response. In patients with hepatic impairment, oxycodone therapy should be initiated at doses one-third to one-half the usual dose and careful dose titration is warranted.

    Seizure disorder, seizures

    Seizures can be precipitated by opiate agonists in patients with a preexisting seizure disorder. The incidence of these effects during oxycodone therapy is not known, but appears to be rare at normal doses. Monitor patients with a history of seizure disorders for worsened seizure control during therapy.

    Geriatric

    Use oxycodone with caution in geriatric or debilitated patients. Geriatric or debilitated patients are more susceptible to adverse reactions, especially sedation and respiratory depression, probably as a result of the altered distribution of the drug and decreased elimination. Initial doses may need to be reduced, and dosages should be carefully titrated, taking into account analgesic effects, adverse reactions, and concomitant conditions and drugs that may increase CNS depression and depress respiration. When using the extended-release tablets, reduce the starting dose to one-third to one-half the usual dosage in debilitated, non-opioid tolerant patients.[39926] According to the Beers Criteria, opiate agonists are considered potentially inappropriate medications (PIMs) in geriatric patients with a history of falls or fractures and should be avoided in these patient populations, except in the setting of severe acute pain, since opiates can produce ataxia, impaired psychomotor function, syncope, and additional falls. If an opiate must be used, consider reducing the use of other CNS-active medications that increase the risk of falls and fractures and implement strategies to reduce fall risk. In patients receiving palliative care or hospice, the balance of benefits and harms of medication management may differ from those of the general population of older adults.[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). OBRA cautions that opioids may cause constipation, nausea, vomiting, sedation, lethargy, weakness, confusion, dysphoria, physical and psychological dependency, hallucinations, and unintended respiratory depression, especially in individuals with compromised pulmonary function. These adverse effects can lead to other consequences such as falls. The initiation of longer-acting opioids is not recommended unless shorter-acting opioids have been unsuccessful, or titration of shorter-acting doses has established a clear daily dose of opioid analgesic that can be provided by using a long-acting form.[60742]

    Children, infants, neonates

    Opioid agonists may be used in children for moderate to severe pain; however, all formulations of oxycodone should be used with caution in children. Immediate-release formulations have not been FDA-approved in neonates, infants, children, or adolescents. Oxycodone extended-release tablets are approved for pediatric use; use may be considered in opioid tolerant patients 11 years or older who have received opioids for at least 5 consecutive days and are taking a minimum of 20 mg per day of oxycodone or its equivalent for 2 days immediately preceding extended-release oxycodone initiation. These tablets cannot be crushed or broken for administration. If the calculated oxycodone dose does not coincide with an available tablet size, the dose should always be rounded down to the nearest available tablet strength. If the calculated dose is less than 20 mg/dose, there is no safe strength for conversion, and the patient should not be initiated on extended-release oxycodone. Accidental ingestion or unintended exposure by children can be fatal. Instruct patients and caregivers to keep all oxycodone dosage forms out of the reach of children and to properly discard all unneeded product. Neonates and infants younger than 6 months of age have highly variable clearance of opioid agonists. Therefore, infants younger than 6 months of age given opioid agonists must be closely monitored for apnea until 24 hours after their last dose. Clinical practice guidelines suggest close monitoring of children up to 1 year of age.

    Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

    Pregnancy exposure data are insufficient to inform a drug-associated risk of birth defects or miscarriage with oxycodone. In animal studies with rats and rabbits, no embryo-fetal toxicity was detected when oxycodone was given during organogenesis at doses 0.5- to 15-times the adult human dose of 160 mg/day. In a pre- and post-natal study in rats, oxycodone given during gestation and lactation at a dose approximately 0.4 times an adult human dose of 160 mg/day was not associated with any long-term developmental or reproductive adverse effects in pups; however, pup weight was transiently decreased during lactation and the early post-weaning period. No drug-related effects on reproductive performance in female rats were observed. Published data with rats indicate that oxycodone may result in neurobehavioral effects, including altered stress response, increased anxiety-like behavior, and altered learning and memory, in offspring when given at clinically relevant doses and below. Oxycodone is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]

    Breast-feeding

    Oxycodone is distributed into breast milk at varying degrees depending upon the dose. There is no information available on the effects of oxycodone on milk production. Because of the potential for serious adverse reactions, including excess sedation and respiratory depression in a breast-fed infant, breast-feeding is not recommended during treatment with oxycodone. Monitor infants who are exposed to oxycodone through breast milk for excess sedation and respiratory depression. Withdrawal symptoms can occur in breast-fed infants if oxycodone or breast-feeding is discontinued by the mother. A retrospective study compared central nervous system (CNS) depression in breast-feeding infants of mothers receiving oxycodone (n = 139), codeine (n = 210), or acetaminophen (n = 184). Symptoms of CNS depression were determined through questionnaires completed by the mothers. CNS depression was significantly higher in breast-fed infants exposed to oxycodone compared to acetaminophen (20.1% vs. 0.5%, p less than 0.0001) and was not significantly different compared to infants exposed to codeine (16.7%, p more than 0.05). The median doses of both oxycodone and codeine in the mothers with infants that experienced symptoms were significantly higher compared to those that did not (oxycodone 0.4 mg/kg/day vs. 0.15 mg/kg/day, p = 0.0005; codeine 1.4 mg/kg/day vs. 0.9 mg/kg/day, p less than 0.001).

    Infertility, reproductive risk

    Chronic opioid use may influence the hypothalamic-pituitary-gonadal axis, leading to hormonal changes that may manifest as hypogonadism (gonadal suppression) and pose a reproductive risk. Although the exact causal role of opioids in the clinical manifestations of hypogonadism is unknown, patients could experience libido decrease, impotence, amenorrhea, or infertility. It is not known whether the effects on fertility are reversible. Monitor patients for symptoms of opioid-induced endocrinopathy. Patients presenting with signs or symptoms of androgen deficiency should undergo laboratory evaluation.

    Driving or operating machinery

    Any patient receiving oxycodone should be warned about the possibility of sedation and to use caution when driving or operating machinery.

    ADVERSE REACTIONS

    Severe

    heart failure / Delayed / 0-3.0
    thrombosis / Delayed / 0-3.0
    apnea / Delayed / 0-3.0
    laryngospasm / Rapid / 0-3.0
    bone fractures / Delayed / 0-3.0
    seizures / Delayed / 0-1.0
    exfoliative dermatitis / Delayed / 0-1.0
    ileus / Delayed / Incidence not known
    neonatal opioid withdrawal syndrome / Delayed / Incidence not known
    suicidal ideation / Delayed / Incidence not known
    pancreatitis / Delayed / Incidence not known
    biliary obstruction / Delayed / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    anaphylactic shock / Rapid / Incidence not known
    SIADH / Delayed / Incidence not known
    respiratory arrest / Rapid / Incidence not known
    bradycardia / Rapid / Incidence not known
    cardiac arrest / Early / Incidence not known
    GI obstruction / Delayed / Incidence not known
    serotonin syndrome / Delayed / Incidence not known

    Moderate

    constipation / Delayed / 3.0-23.0
    gastritis / Delayed / 1.0-5.0
    withdrawal / Early / 0-5.0
    euphoria / Early / 1.0-5.0
    depression / Delayed / 0-5.0
    dysphoria / Early / 1.0-5.0
    migraine / Early / 0-5.0
    confusion / Early / 0-5.0
    hyponatremia / Delayed / 1.0-5.0
    hypochloremia / Delayed / 1.0-5.0
    edema / Delayed / 0-5.0
    sinus tachycardia / Rapid / 0-5.0
    orthostatic hypotension / Delayed / 1.0-5.0
    hypertension / Early / 1.0-5.0
    urinary retention / Early / 0-5.0
    blurred vision / Early / 0-5.0
    dyspnea / Early / 0-5.0
    thrombocytopenia / Delayed / 1.0-5.0
    neutropenia / Delayed / 1.0-5.0
    dysuria / Early / 0-5.0
    hyperglycemia / Delayed / 0-5.0
    glossitis / Early / 0-3.0
    palpitations / Early / 0-3.0
    bleeding / Early / 0-3.0
    peripheral vasodilation / Rapid / 0-3.0
    peripheral edema / Delayed / 0-3.0
    hypotension / Rapid / 0-3.0
    hypertonia / Delayed / 0-3.0
    dysphagia / Delayed / 0-3.0
    gout / Delayed / 0-3.0
    bone pain / Delayed / 0-3.0
    anemia / Delayed / 0-3.0
    leukopenia / Delayed / 0-3.0
    amblyopia / Delayed / 0-3.0
    stomatitis / Delayed / 0-1.0
    hyperesthesia / Delayed / 0-1.0
    dysphonia / Delayed / 0-1.0
    hallucinations / Early / 0-1.0
    ataxia / Delayed / 0-1.0
    amnesia / Delayed / 0-1.0
    hypotonia / Delayed / 0-1.0
    impotence (erectile dysfunction) / Delayed / 0-1.0
    chest pain (unspecified) / Early / 0-1.0
    dehydration / Delayed / 0-1.0
    lymphadenopathy / Delayed / 0-1.0
    hematuria / Delayed / 0-1.0
    tolerance / Delayed / Incidence not known
    psychological dependence / Delayed / Incidence not known
    physiological dependence / Delayed / Incidence not known
    impaired cognition / Early / Incidence not known
    respiratory depression / Rapid / Incidence not known
    elevated hepatic enzymes / Delayed / Incidence not known
    cholestasis / Delayed / Incidence not known
    infertility / Delayed / Incidence not known
    adrenocortical insufficiency / Delayed / Incidence not known
    myoclonia / Delayed / Incidence not known
    hyperalgesia / Delayed / Incidence not known

    Mild

    nausea / Early / 0-23.0
    drowsiness / Early / 3.0-23.0
    vomiting / Early / 0-21.0
    diarrhea / Early / 0-6.0
    xerostomia / Early / 0-6.0
    asthenia / Delayed / 3.0-6.0
    anorexia / Delayed / 0-5.0
    abdominal pain / Early / 0-5.0
    gastroesophageal reflux / Delayed / 1.0-5.0
    dyspepsia / Early / 0-5.0
    hiccups / Early / 1.0-5.0
    anxiety / Delayed / 0-5.0
    agitation / Early / 0-5.0
    paresthesias / Delayed / 0-5.0
    hypoesthesia / Delayed / 0-5.0
    rash / Early / 0-5.0
    flushing / Rapid / 1.0-5.0
    tremor / Early / 0-5.0
    hyperhidrosis / Delayed / 0-5.0
    fever / Early / 0-5.0
    irritability / Delayed / 1.0-5.0
    diaphoresis / Early / 0-5.0
    fatigue / Early / 1.0-5.0
    chills / Rapid / 0-5.0
    cough / Delayed / 0-5.0
    back pain / Delayed / 0-5.0
    arthralgia / Delayed / 0-5.0
    myalgia / Early / 0-5.0
    musculoskeletal pain / Early / 1.0-5.0
    gingivitis / Delayed / 0-3.0
    pharyngitis / Delayed / 0-3.0
    epistaxis / Delayed / 0-3.0
    rhinitis / Early / 0-3.0
    sinusitis / Delayed / 0-3.0
    infection / Delayed / 0-3.0
    photosensitivity / Delayed / 0-3.0
    flatulence / Early / 0-1.0
    eructation / Early / 0-1.0
    appetite stimulation / Delayed / 0-1.0
    lethargy / Early / 0-1.0
    restlessness / Early / 0-1.0
    dysgeusia / Early / 0-1.0
    emotional lability / Early / 0-1.0
    vertigo / Early / 0-1.0
    hyperkinesis / Delayed / 0-1.0
    syncope / Early / 0-1.0
    malaise / Early / 0-1.0
    night sweats / Early / 0-1.0
    tinnitus / Delayed / 0-1.0
    polyuria / Early / 0-1.0
    xerosis / Delayed / 0-1.0
    insomnia / Early / 1.0
    headache / Early / 3.0
    dizziness / Early / 3.0
    pruritus / Rapid / 2.6
    miosis / Early / 10.0
    dental caries / Delayed / Incidence not known
    urticaria / Rapid / Incidence not known
    amenorrhea / Delayed / Incidence not known
    gonadal suppression / Delayed / Incidence not known
    libido decrease / Delayed / Incidence not known
    mydriasis / Early / Incidence not known

    DRUG INTERACTIONS

    Acetaminophen; Aspirin; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Acetaminophen; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as oxycodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of oxycodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression.
    Adagrasib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of adagrasib is necessary. If adagrasib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with strong CYP3A inhibitors like adagrasib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If adagrasib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
    Alfentanil: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
    Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at one-third to one-half the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
    Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Amiodarone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amiodarone is necessary. If amiodarone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like amiodarone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amiodarone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Amlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Atorvastatin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Benazepril: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Celecoxib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Olmesartan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Valsartan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Amphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Amphetamine; Dextroamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Amphetamines: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Apalutamide: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with apalutamide is necessary; consider increasing the dose of oxycodone as needed. If apalutamide is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
    Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
    Aprepitant, Fosaprepitant: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of aprepitant/fosaprepitant is necessary. If aprepitant/fosaprepitant is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like aprepitant/fosaprepitant can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If aprepitant/fosaprepitant is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor. When administered as a single oral or single intravenous dose, the inhibitory effect of aprepitant on CYP3A4 is weak and did not result in a clinically significant increase in the AUC of a sensitive substrate.
    Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Armodafinil: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with armodafinil is necessary; consider increasing the dose of oxycodone as needed. If armodafinil is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and armodafinil is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Articaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Asciminib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of asciminib is necessary. If asciminib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like asciminib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If asciminib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Atazanavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like atazanavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If atazanavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Atazanavir; Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like atazanavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If atazanavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Atenolol; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Atropine: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Atropine; Difenoxin: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
    Atropine; Edrophonium: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Avacopan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of avacopan is necessary. If avacopan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like avacopan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If avacopan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Azilsartan; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Barbiturates: (Major) Concomitant use of oxycodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with a barbiturate may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; oxycodone is a CYP3A4 substrate.
    Belladonna; Opium: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and belladonna use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Belumosudil: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of belumosudil is necessary. If belumosudil is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like belumosudil can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If belumosudil is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Belzutifan: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with belzutifan is necessary; consider increasing the dose of oxycodone as needed. If belzutifan is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and belzutifan is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Bendroflumethiazide; Nadolol: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking oxycodone, reduce initial dosage and titrate to clinical response. If oxycodone is prescribed in a patient taking benzhydrocodone, use a lower initial dose of oxycodone and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and oxycodone because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Benzphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Benztropine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and benztropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Berotralstat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of berotralstat is necessary. If berotralstat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like berotralstat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If berotralstat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
    Bexarotene: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with bexarotene is necessary; consider increasing the dose of oxycodone as needed. If bexarotene is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and bexarotene is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Bicalutamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of bicalutamide is necessary. If bicalutamide is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like bicalutamide can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If bicalutamide is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Bosentan: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with bosentan is necessary; consider increasing the dose of oxycodone as needed. If bosentan is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
    Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Brigatinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with brigatinib is necessary; consider increasing the dose of oxycodone as needed. If brigatinib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and brigatinib is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Bumetanide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
    Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Meloxicam: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Buprenorphine: (Major) Avoid concomitant use of oxycodone and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of oxycodone and/or precipitation of withdrawal symptoms.
    Buprenorphine; Naloxone: (Major) Avoid concomitant use of oxycodone and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of oxycodone and/or precipitation of withdrawal symptoms.
    Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
    Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of oxycodone, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs.
    Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as oxycodone. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Carbamazepine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with carbamazepine is necessary; consider increasing the dose of oxycodone as needed. If carbamazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Cariprazine: (Moderate) Concomitant use of opioid agonists like oxycodone with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Celecoxib; Tramadol: (Major) Concomitant use of tramadol with oxycodone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Cenobamate: (Moderate) Concomitant use of oxycodone with cenobamate may cause excessive sedation and somnolence. Limit the use of oxycodone with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Additionally, monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with cenobamate is necessary; consider increasing the dose of oxycodone as needed. If cenobamate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Ceritinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ceritinib is necessary. If ceritinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with strong CYP3A4 inhibitors like ceritinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ceritinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chloramphenicol: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of chloramphenicol is necessary. If chloramphenicol is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like chloramphenicol can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If chloramphenicol is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
    Chlorothiazide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpromazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
    Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Cimetidine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cimetidine is necessary. If cimetidine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like cimetidine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cimetidine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Ciprofloxacin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ciprofloxacin is necessary. If ciprofloxacin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like ciprofloxacin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ciprofloxacin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Citalopram: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
    Clarithromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Clobazam: (Major) Concomitant use of oxycodone with clobazam may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with clobazam to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with clobazam may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of clobazam may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Clobazam induces CYP3A4; oxycodone is a CYP3A4 substrate.
    Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Clopidogrel: (Moderate) Coadministration of opioid agonists, such as oxycodone, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
    Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Clozapine: (Moderate) Concomitant use of oxycodone with other CNS depressants, such as clozapine, can lead to additive respiratory depression, hypotension, profound sedation, or coma. In addition, this drug combination may result in additive effects on intestinal motility or bladder function. Prior to concurrent use of oxycodone in patients taking clozapine, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxycodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxycodone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider using a lower clozapine dose. Monitor patients for sedation and respiratory depression.
    Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Codeine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Codeine; Guaifenesin: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
    Codeine; Promethazine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
    COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
    Conivaptan: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of conivaptan is necessary. If conivaptan is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like conivaptan can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If conivaptan is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Crizotinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of crizotinib is necessary. If crizotinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like crizotinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If crizotinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
    Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Cyclobenzaprine: (Major) Concomitant use of oxycodone with cyclobenzaprine may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome and anticholinergic effects. Limit the use of opioid pain medications with cyclobenzaprine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Cyclosporine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cyclosporine is necessary. If cyclosporine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like cyclosporine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cyclosporine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Cyproheptadine: (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dabrafenib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with dabrafenib is necessary; consider increasing the dose of oxycodone as needed. If dabrafenib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and dabrafenib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Dalfopristin; Quinupristin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of dalfopristin; quinupristin is necessary. If dalfopristin; quinupristin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like dalfopristin; quinupristin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If dalfopristin; quinupristin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Danazol: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of danazol is necessary. If danazol is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like danazol can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If danazol is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Dantrolene: (Major) Concomitant use of opioid agonists with dantrolene may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid agonists with dantrolene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Daridorexant: (Major) Concomitant use of opiate agonists with daridorexant may cause excessive sedation and somnolence. Limit the use of opiates with daridorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing cough medicines that contain opiates in patients taking daridorexant.
    Darifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when darifenacin, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
    Darunavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Darunavir; Cobicistat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of darunavir is necessary. If darunavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like darunavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If darunavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Deferasirox: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with deferasirox is necessary; consider increasing the dose of oxycodone as needed. If deferasirox is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and deferasirox is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Delavirdine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of delavirdine is necessary. If delavirdine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like delavirdine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If delavirdine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
    Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
    Desvenlafaxine: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If extended-release oxycodone or oxycodone; naloxone is initiated in a patient taking a barbiturate, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage and titrate to clinical response; reduced initial doses of immediate-release oxycodone, oxycodone; naltrexone, aspirin, ASA; oxycodone, and ibuprofen; oxycodone are also recommended. If a decision is made to start treatment with acetaminophen; oxycodone extended-release tabIets, start with 1 tablet every 12 hours. If a barbitruate is prescribed for a patient taking an opioid agonist, use a lower initial dose of the barbitruate and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Dexamethasone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with dexamethasone is necessary; consider increasing the dose of oxycodone as needed. If dexamethasone is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and dexamethasone is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dexbrompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dexchlorpheniramine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dexmedetomidine: (Moderate) Concomitant use of opioid agonists with dexmedetomidine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with dexmedetomidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dexpanthenol: (Moderate) Use caution when using dexpanthenol with drugs that decrease gastrointestinal motility, such as opiate agonists, as it may decrease the effectiveness of dexpanthenol.
    Dextroamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Dicyclomine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and dicyclomine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Difelikefalin: (Major) Avoid concomitant use of opioids and other CNS depressants, such as difelikefalin. Concomitant use can increase the risk of respiratory depression, hypotension, profound sedation, and death. If alternate treatment options are inadequate and coadministration is necessary, limit dosages and durations to the minimum required, monitor patients closely for respiratory depression and sedation, and consider prescribing naloxone for the emergency treatment of opioid overdose.
    Diltiazem: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of diltiazem is necessary. If diltiazem is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like diltiazem can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If diltiazem is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Dimenhydrinate: (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Diphenhydramine; Ibuprofen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Diphenhydramine; Naproxen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Diphenoxylate; Atropine: (Major) Reserve concomitant use of oxycodone and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
    Dolasetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Doxylamine; Pyridoxine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Dronabinol: (Moderate) Concomitant use of opioid agonists with dronabinol may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dronabinol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Dronedarone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of dronedarone is necessary. If dronedarone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like dronedarone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If dronedarone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Droperidol: (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Duloxetine: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Duvelisib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of duvelisib is necessary. If duvelisib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like duvelisib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If duvelisib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Efavirenz: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with efavirenz is necessary; consider increasing the dose of oxycodone as needed. If efavirenz is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Elagolix: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Elagolix; Estradiol; Norethindrone acetate: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Elbasvir; Grazoprevir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of grazoprevir is necessary. If grazoprevir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like grazoprevir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If grazoprevir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Elexacaftor; tezacaftor; ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Eluxadoline: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of eluxadoline is necessary. If eluxadoline is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like eluxadoline can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If eluxadoline is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like cobicistat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If cobicistat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Enzalutamide: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with enzalutamide is necessary; consider increasing the dose of oxycodone as needed. If enzalutamide is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Erythromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of erythromycin is necessary. If erythromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like erythromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If erythromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Escitalopram: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
    Esketamine: (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
    Eslicarbazepine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with eslicarbazepine is necessary; consider increasing the dose of oxycodone as needed. If eslicarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and eslicarbazepine is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Eszopiclone: (Moderate) Concomitant use of oxycodone with eszopiclone may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If eszopiclone is used concurrently with oxycodone, a reduced dosage of oxycodone and/or eszopiclone is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Ethacrynic Acid: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
    Ethanol: (Major) Advise patients to avoid alcohol consumption while taking opioids. Alcohol consumption may result in additive CNS depression and may increase the risk for opioid overdose. Consider the patient's use of alcohol when prescribing opioid medications. If the patient is unlikely to be compliant with avoiding alcohol, consider prescribing naloxone especially if additional risk factors for opioid overdose are present.
    Etomidate: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Etravirine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with etravirine is necessary; consider increasing the dose of oxycodone as needed. If etravirine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and etravirine is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Everolimus: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of everoliumus is necessary. If everoliumus is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like everoliumus can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If everoliumus is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Fedratinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fedratinib is necessary. If fedratinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like fedratinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fedratinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Fenfluramine: (Moderate) Concomitant use of opioid agonists with fenfluramine may cause excessive sedation and somnolence. Limit the use of opioid agonists with fenfluramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Fentanyl: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
    Flavoxate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and flavoxate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Flibanserin: (Moderate) Concomitant use of opioid agonists with flibanserin may cause excessive sedation and somnolence. Limit the use of opioid pain medication with flibanserin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Fluconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fluconazole is necessary. If fluconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like fluconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fluconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Fluoxetine: (Moderate) If concomitant use of oxycodone and fluoxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Fluphenazine: (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
    Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Fluvoxamine: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of fluvoxamine is necessary. If fluvoxamine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like fluvoxamine has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like fluvoxamine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fluvoxamine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
    Fosamprenavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fosamprenavir is necessary. If fosamprenavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like fosamprenavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fosamprenavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Fosphenytoin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with fosphenytoin is necessary; consider increasing the dose of oxycodone as needed. If fosphenytoin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and fosphenytoin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Fostamatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of fostamatinib is necessary. If fostamatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like fostamatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If fostamatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Furosemide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
    Gabapentin: (Major) Concomitant use of opioid agonists with gabapentin may cause excessive sedation, somnolence, and respiratory depression. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
    Gefitinib: (Moderate) Monitor for an increased incidence of oxycodone-related adverse effects if gefitinib and oxycodone are used concomitantly. At high concentrations, gefitinib is an inhibitor of CYP2D6, which is partially responsible for the metabolism of oxycodone. As < 15% of the total administered dose is metabolized by CYP2D6 to oxymorphone, concurrent use of some agents that inhibit CYP2D6 has not been shown to result in clinically significant interactions. However, potent inhibitors of CYP2D6, such as ritonavir, may potentially increase the effects of oxycodone. In patients with solid tumors, exposure to metoprolol, another CYP2D6 substrate, was increased by 30% when given on day 15 of gefitinib dosing (500 mg daily); the effect of gefitinib on CYP2D6-dependent drugs is only likely to be clinically relevant when given with CYP2D6 substrates with a narrow therapeutic index or that are individually dose titrated such as oxycodone.
    General anesthetics: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Glycopyrrolate; Formoterol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Granisetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice duing therapy with oxycodone. Grapefruit juice, a strong CYP3A4 inhibitor, may increase plasma concentrations of oxycodone, a CYP3A4 substrate. This may increase or prolong oxycodone-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly.
    Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Guanabenz: (Moderate) Guanabenz is associated with sedative effects. Guanabenz can potentiate the effects of CNS depressants such as opiate agonists, when administered concomitantly.
    Guanfacine: (Moderate) Concomitant use of opioid agonists with guanfacine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with guanfacine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Haloperidol: (Moderate) Haloperidol can potentiate the actions of other CNS depressants such as opiate agonists. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
    Homatropine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and homatropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Hydrocodone; Ibuprofen: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Hydromorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Hydroxyzine: (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Hyoscyamine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Idelalisib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of idelalisib is necessary. If idelalisib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like idelalisib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If idelalisib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Iloperidone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
    Imatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of imatinib is necessary. If imatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like imatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If imatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Indacaterol; Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Indapamide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when indapamide is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Indinavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of indinavir is necessary. If indinavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like indinavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If indinavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Isavuconazonium: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of isavuconazonium is necessary. If isavuconazonium is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like isavuconazonium can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isavuconazonium is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Isoflurane: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Isoniazid, INH: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifampin is necessary; consider increasing the dose of oxycodone as needed. If rifampin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Isoniazid, INH; Rifampin: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of isoniazid is necessary. If isoniazid is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like isoniazid has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like isoniazid can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If isoniazid is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifampin is necessary; consider increasing the dose of oxycodone as needed. If rifampin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Istradefylline: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of istradefylline 40 mg daily is necessary. If istradefylline is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate; istradefylline administered as 40 mg daily is a weak CYP3A4 inhibitor. Coadministration can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If istradefylline is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. There was no effect on drug exposure when istradefylline 20 mg daily was coadministered with a sensitive CYP3A4 substrate.
    Itraconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of itraconazole is necessary. If itraconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like itraconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If itraconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Ketamine: (Major) Concomitant use of oxycodone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Ketoconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ketoconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ketoconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like clarithromycin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If clarithromycin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lapatinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lapatinib is necessary. If lapatinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak CYP3A4 inhibitor like lapatinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lapatinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Larotrectinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of larotrectinib is necessary. If larotrectinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like larotrectinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If larotrectinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lasmiditan: (Moderate) Concomitant use of oxycodone with lasmiditan may cause excessive sedation, somnolence, and serotonin syndrome. Limit the use of oxycodone with lasmiditan to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
    Lefamulin: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of oral lefamulin is necessary. If oral lefamulin is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with moderate CYP3A4 inhibitors like oral lefamulin can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone; an interaction is not expected with intravenous lefamulin. If oral lefamulin is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lemborexant: (Moderate) Concomitant use of oxycodone with lemborexant may cause excessive sedation and somnolence. Limit the use of oxycodone with lemborexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Lenacapavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lenacapavir is necessary. If lenacapavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with moderate CYP3A inhibitors like lenacapavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lenacapavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lesinurad: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lesinurad is necessary; consider increasing the dose of oxycodone as needed. If lesinurad is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lesinurad is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Lesinurad; Allopurinol: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lesinurad is necessary; consider increasing the dose of oxycodone as needed. If lesinurad is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lesinurad is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Letermovir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of letermovir is necessary. If letermovir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a CYP3A4 inhibitor like letermovir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If letermovir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Levamlodipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Levocetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Levoketoconazole: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ketoconazole can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ketoconazole is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Levomilnacipran: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Levorphanol: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Lidocaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Lidocaine; Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Linezolid: (Major) Avoid concomitant use of oxycodone in patients receiving linezolid or within 14 days of stopping treatment with linezolid due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression.
    Lisdexamfetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Lithium: (Moderate) If concomitant use of oxycodone and lithium is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and oxycodone. Lofexidine can potentiate the effects of CNS depressants.
    Lonafarnib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of lonafarnib is necessary. If lonafarnib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with strong CYP3A4 inhibitors like lonafarnib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If lonafarnib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Loop diuretics: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and oxycodone; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
    Lopinavir; Ritonavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Lorcaserin: (Moderate) If concomitant use of oxycodone and lorcaserin is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Lorlatinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lorlatinib is necessary; consider increasing the dose of oxycodone as needed. If lorlatinib is discontinued, consider a dose reduction of lorlatinib and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lorlatinib is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Loxapine: (Moderate) Concomitant use of opioid agonists, such as oxycodone, with loxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with loxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Lumacaftor; Ivacaftor: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ivacaftor is necessary. If ivacaftor is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like ivacaftor can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ivacaftor is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Lumacaftor; Ivacaftor: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with lumacaftor; ivacaftor is necessary; consider increasing the dose of oxycodone as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and lumacaftor; ivacaftor is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Lumateperone: (Moderate) Concomitant use of opioid agonists like oxycodone with lumateperone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lumateperone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Lurasidone: (Moderate) Concomitant use of opioid agonists like oxycodone with lurasidone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lurasidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Maribavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of maribavir is necessary. If maribavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like maribavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If maribavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Mavacamten: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mavacamten is necessary; consider increasing the dose of oxycodone as needed. If mavacamten is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mavacamten is a moderate CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Melatonin: (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Meperidine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Meperidine; Promethazine: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
    Mepivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Meprobamate: (Moderate) Concomitant use of oxycodone with meprobamate may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If meprobamate is used concurrently with oxycodone, a reduced dosage of oxycodone and/or meprobamate is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
    Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
    Methadone: (Major) Concomitant use of methadone with another CNS depressant, such as oxycodone, can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of methadone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Methadone should be used with caution and in reduced dosages if used concurrently with a CNS depressant; in opioid-naive adults, use an initial methadone dose of 2.5 mg every 12 hours. Also, consider a using a lower dose of the CNS depressant; use an initial dose of oxycodone at one-third to one-half the usual dosage. Monitor patients for sedation and respiratory depression.
    Methamphetamine: (Moderate) If concomitant use of oxycodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Methocarbamol: (Major) Concomitant use of opioid agonists with methocarbamol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with methocarbamol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Methscopolamine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant oxycodone and methscopolamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Methyclothiazide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Methylene Blue: (Major) Avoid concomitant use of oxycodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration.
    Methylphenidate Derivatives: (Moderate) If concomitant use of oxycodone and methylphenidate derivatives is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Metolazone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
    Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone products, use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Mifepristone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of mifepristone is necessary. If mifepristone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like mifepristone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If mifepristone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
    Milnacipran: (Moderate) If concomitant use of oxycodone and serotonin norepinephrine reuptake inhibitors is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
    Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Mitapivat: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mitapivat is necessary; consider increasing the dose of oxycodone as needed. If mitapivat is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mitapivat is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Mitotane: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mitotane is necessary; consider increasing the dose of oxycodone as needed. If mitotane is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and mitotane is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Mobocertinib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with mobocertinib is necessary; consider increasing the dose of oxycodone as needed. If mobocertinib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and mobocertinib is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Modafinil: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with modafinil is necessary; consider increasing the dose of oxycodone as needed. If modafinil is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and modafinil is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Molindone: (Moderate) Concomitant use of opioid agonists like oxycodone with molindone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with molindone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Monoamine oxidase inhibitors: (Major) The use of oxycodone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of serotonin syndrome and CNS and respiratory depression.
    Morphine: (Major) Concomitant use of oxycodone with morphine may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of oxycodone and/or morphine is recommended; use an initial dose of oxycodone at one-third to one-half the usual dosage. For extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor for sedation and respiratory depression.
    Morphine; Naltrexone: (Major) Concomitant use of oxycodone with morphine may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of oxycodone and/or morphine is recommended; use an initial dose of oxycodone at one-third to one-half the usual dosage. For extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor for sedation and respiratory depression.
    Nabilone: (Major) Avoid coadministration of opioid agonists with nabilone due to the risk of additive CNS depression.
    Nafcillin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with nafcillin is necessary; consider increasing the dose of oxycodone as needed. If nafcillin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and nafcillin is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as oxycodone. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of acetaminophen; oxycodone. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
    Naratriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Nefazodone: (Major) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression, sedation, and serotonin syndrome if concurrent use of nefazodone is necessary. If nefazodone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system like nefazodone has resulted in serotonin syndrome. In addition, oxycodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like nefazodone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nefazodone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nelfinavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nelfinavir is necessary. If nelfinavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like nelfinavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nelfinavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
    Netupitant, Fosnetupitant; Palonosetron: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of netupitant is necessary. If netupitant is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like netupitant can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If netupitant is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nevirapine: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with nevirapine is necessary; consider increasing the dose of oxycodone as needed. If nevirapine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and nevirapine is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Nicardipine: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nicardipine is necessary. If nicardipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like nicardipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nicardipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nilotinib: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of nilotinib is necessary. If nilotinib is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a moderate inhibitor like nilotinib can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If nilotinib is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nirmatrelvir; Ritonavir: (Major) Consider withholding oxycodone, if clinically appropriate, during receipt of ritonavir-boosted nirmatrelvir. If this is not feasible, consider using an alternative COVID-19 therapy or reducing the oxycodone dose. Coadministration may increase oxycodone exposure, resulting in prolonged opioid effects including fatal respiratory depression. Oxycodone is metabolized by CYP3A4 and nirmatrelvir is a CYP3A inhibitor. (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
    Nortriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Odevixibat: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with odevixibat is necessary; consider increasing the dose of oxycodone as needed. If odevixibat is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and odevixibat is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Olanzapine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Olanzapine; Fluoxetine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) If concomitant use of oxycodone and fluoxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Olanzapine; Samidorphan: (Contraindicated) Salmidorphan is contraindicated in patients who are using opiate agonists or undergoing acute opioid withdrawal. Salmidorphan increases the risk of precipitating acute opioid withdrawal in patients dependent on opioids. Before initiating salmidorphan, there should be at least a 7-day opioid-free interval from the last use of short-acting opioids, and at least a 14-day opioid-free interval from the last use of long-acting opioids. In emergency situations, if a salmidorphan-treated patient requires opiates for anesthesia or analgesia, discontinue salmidorphan. The opiate agonist should be administered by properly trained individual(s), and the patient properly monitored in a setting equipped and staffed for cardiopulmonary resuscitation. In non-emergency situations, if a salmidorphan-treated patient requires opiate agonist treatment (e.g., for analgesia) discontinue salmidorphan at least 5 days before opioid treatment. Salmidorphan, as an opioid antagonist, may cause opioid treatment to be less effective or ineffective shortly after salmidorphan discontinuation. (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Oliceridine: (Major) Concomitant use of oliceridine with oxycodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of oliceridine with oxycodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
    Olutasidenib: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with olutasidenib is necessary; consider increasing the dose of oxycodone as needed. If olutasidenib is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and olutasidenib is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Omaveloxolone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with omaveloxolone is necessary; consider increasing the dose of oxycodone as needed. If omaveloxolone is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A substrate and omaveloxolone is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of ritonavir is necessary. If ritonavir is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a strong CYP3A4 inhibitor like ritonavir can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If ritonavir is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Omeprazole; Amoxicillin; Rifabutin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with rifabutin is necessary; consider increasing the dose of oxycodone as needed. If rifabutin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Ondansetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering oxycodone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risks and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Oritavancin: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oritavancin is necessary; consider increasing the dose of oxycodone as needed. If oritavancin is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oritavancin is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial oxycodone dosage by one-third to one-half when using the extended-release tablets.
    Osilodrostat: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of osilodrostat is necessary. If osilodrostat is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like osilodrostat can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If osilodrostat is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone.
    Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If oxycodone is initiated in a patient taking a benzodiazepine, reduce dosages and titrate to clinical response. For acetaminophen; oxycodone extended-release tablets, start with 1 tablet PO every 12 hours, and for other oxycodone product