PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Dipeptidyl Peptidase-4 (DDP-4) Inhibitor and Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitor Antidiabetic Combinations

    DEA CLASS

    Rx

    DESCRIPTION

    Oral combination of a sodium-glucose co-transporter 2 (SGLT2) inhibitor and dipeptidyl peptidase-4 (DPP-4) inhibitor
    Used for adults with type 2 diabetes mellitus; when used with metformin, patients may achieve A1C targets
    Contraindicated for patients with eGFR less than 45 mL/minute/1.73 m2, end-stage renal disease (ESRD), or receiving dialysis

    COMMON BRAND NAMES

    QTERN

    HOW SUPPLIED

    Dapagliflozin, Saxagliptin/QTERN Oral Tab: 10-5mg, 5-5mg

    DOSAGE & INDICATIONS

    For the treatment of type 2 diabetes mellitus in combination with diet and exercise.
    Oral dosage
    Adults

    Individualize the dose based on efficacy and tolerability. Give dose PO once daily in the morning with or without food. NOT CURRENTLY TAKING DAPAGLIFLOZIN: Initiate with 5 mg dapagliflozin and 5 mg saxagliptin PO once daily in the morning. PATIENTS TOLERATING 5 MG DAPAGLIGLOZIN/5 MG SAXAGLIPTIN ONCE DAILY WHO REQUIRE ADDITIONAL GLYCEMIC CONTROL: May increase to 10 mg dapagliflozin and 5 mg saxagliptin PO once daily in the morning.

    MAXIMUM DOSAGE

    Adults

    Dapagliflozin 10 mg/day PO and saxagliptin 5 mg/day PO.

    Geriatric

    Dapagliflozin 10 mg/day PO and saxagliptin 5 mg/day PO.

    Adolescents

    Safety and efficacy have not been established.

    Children

    Safety and efficacy have not been established.

    Infants

    Not indicated.

    Neonates

    Not indicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    No dosage adjustment is needed in patients with mild, moderate, or severe hepatic impairment. The use of dapagliflozin; saxagliptin has not been studied in patients with severe hepatic impairment; assess the benefit vs. risk of use for the individual patient.

    Renal Impairment

    eGFR 45 mL/minute/1.73 m2 or more: No dosage adjustment needed.
    eGFR less than 45 mL/minute/1.73 m2: Use is contraindicated.
     
    Intermittent hemodialysis
    Use is contraindicated.

    ADMINISTRATION

    Oral Administration
    Oral Solid Formulations

    Do not cut, split, or crush tablet. Patient should swallow tablet whole.
    Administer once daily in the morning, with or without food.

    STORAGE

    QTERN:
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    Exfoliative dermatitis, history of angioedema, serious rash

    Dapagliflozin; saxagliptin is contraindicated in patients with a history of a serious hypersensitivity reaction to dapagliflozin or saxagliptin, such as anaphylaxis, urticaria, history of angioedema, exfoliative dermatitis or other serious skin conditions (serious rash), including Stevens-Johnson Syndrome. Hypersensitivity reactions (e.g., angioedema, urticaria, hypersensitivity) were reported with dapagliflozin during clinical programs. A risk of serious hypersensitivity reactions or anaphylaxis has also been reported in patients during the first 3 months of therapy with saxagliptin; some reports occurred after the first dose. Use caution in patients with a history of angioedema or anaphylaxis to another dipeptidyl peptidase-4 (DPP-4) inhibitor because it is unknown whether such patients will be predisposed to severe reactions with saxagliptin. Postmarketing cases of serious rash, specifically bullous pemphigoid, requiring hospitalization have been reported with DPP-4 inhibitor use. Treatment with topical or systemic immunosuppressives and discontinuation of the DPP-4 inhibitor has typically resulted in resolution of the rash. Inform patients of the risk of serious rash and tell them to report the development of blisters or erosions while receiving dapagliflozin; saxagliptin. If a serious skin reaction is suspected, discontinue dapagliflozin; saxagliptin and refer the patient to a dermatologist for diagnosis and appropriate treatment. If other hypersensitivity reactions occur, discontinue use of dapagliflozin; sitagliptin, treat per standard of care and monitor until signs and symptoms resolve.[61790]

    Diabetic ketoacidosis, surgery, type 1 diabetes mellitus

    Dapagliflozin; saxagliptin is not indicated for the treatment of patients with type 1 diabetes mellitus and should not be used for the treatment of diabetic ketoacidosis (DKA). Both conditions require the use of insulin. Fatal cases of ketoacidosis have been reported in patients with type 1 and type 2 diabetes mellitus receiving sodium glucose co-transporter-2 (SGLT2) inhibitors, including dapagliflozin. In placebo-controlled trials of patients with type 1 diabetes mellitus, the risk of ketoacidosis was increased in patients who received SGLT2 inhibitors compared to patients who received placebo. Patients treated with dapagliflozin; saxagliptin who present with signs and symptoms consistent with metabolic severe acidosis should be assessed for ketoacidosis regardless of presenting blood glucose levels, as ketoacidosis may be present even if blood glucose levels are less than 250 mg/dL. If ketoacidosis is suspected, discontinue dapagliflozin; saxagliptin, evaluate the patient and institute prompt treatment. Treatment of ketoacidosis may require insulin, fluid and carbohydrate replacement. In many of the postmarketing reports, and particularly in patients with type 1 diabetes, the presence of ketoacidosis was not immediately recognized, and the institution of treatment was delayed because presenting blood glucose levels were below those typically expected for DKA (often less than 250 mg/dL). Signs and symptoms at presentation were consistent with metabolic severe acidosis and included nausea, emesis, abdominal pain, generalized malaise, and shortness of breath. In some but not all cases, factors predisposing to ketoacidosis such as insulin dose reduction, acute febrile illness, reduced caloric intake due to illness or surgical procedures, pancreatic disorders suggesting insulin deficiency, and alcohol abuse were identified. Before initiating dapagliflozin; saxagliptin, consider factors in the patient history that may predispose to ketoacidosis including pancreatic insulin deficiency from any cause, caloric restriction, and alcohol abuse. For patients who undergo scheduled surgery, dapagliflozin; saxagliptin should be temporarily discontinued at least 3 days before surgery. Consider monitoring for ketoacidosis and temporarily discontinuing the product in clinical situations known to predispose to ketoacidosis (e.g., prolonged fasting due to acute illness or surgical procedure). Ensure risk factors for ketoacidosis are resolved before restarting treatment. Educate patients on the signs and symptoms of ketoacidosis and instruct patients to discontinue this product and seek medical attention immediately if signs and symptoms occur. [59629] [60400]

    Dialysis, hypovolemia, renal disease, renal failure, renal impairment

    Dapagliflozin; saxagliptin is contraindicated in patients with moderate to severe renal impairment (eGFR less than 45 mL/minute/1.73 m2), or with end-stage renal failure, or patients on dialysis. Assess renal function in all patients before initiation of dapagliflozin; saxagliptin therapy and periodically thereafter. In those patients at increased risk for the development of renal impairment, such as the elderly, renal function should be assessed more frequently. Dapagliflozin causes intravascular volume depletion; renal function abnormalities can occur. Renal impairment may also occur as a result of certain medical conditions such as cardiovascular collapse, acute heart attack, and septicemia. Initiation of SGLT2 inhibitors, including dapagliflozin, causes a small increase in serum creatinine and decrease in eGFR. In patients with normal or mildly impaired renal function at baseline, these changes in serum creatinine and eGFR generally occur within weeks of starting therapy and then stabilize. The acute effect on eGFR reverses after treatment discontinuation, suggesting acute hemodynamic changes play a role in the renal function changes observed with dapagliflozin. Increases that do not fit this pattern should prompt further evaluation to exclude the possibility of acute kidney injury. Acute kidney injury, some requiring hospitalization and dialysis, has been reported during the postmarketing period with the use of dapagliflozin in patients with type 2 diabetes mellitus; some reports involved patients younger than 65 years. According to guidelines, randomized clinical outcome trials of advanced kidney disease or high cardiovascular disease risk with normal kidney function have not shown that SGLT2 inhibitors promote acute kidney injury. Despite these findings, the manufacturer recommends that before initiating dapagliflozin, consider factors that may predispose patients with type 2 diabetes mellitus to acute kidney injury prior to starting them on dapagliflozin, including hypovolemia; chronic renal insufficiency; elderly age; congestive heart failure; pre-existing renal disease; and concomitant medications such as diuretics, ACE inhibitors, angiotensin II receptor blockers (ARBs), and NSAIDs. Consider temporarily discontinuing dapagliflozin in any setting of reduced oral intake such as acute illness or fasting, or with fluid losses such as gastrointestinal illness or excessive heat exposure. Monitor patients for signs and symptoms of acute kidney injury. If acute kidney injury occurs, discontinue dapagliflozin promptly and institute treatment. Dapagliflozin was evaluated in 2 studies that included patients with type 2 diabetes mellitus and moderate renal impairment (eGFR 45 to 59 mL/minute/1.73 m2 and eGFR of 30 to 59 mL/minute/1.73 m2, respectively). In the study of patients with an eGFR 30 to 59 mL/minute/1.73 m2, 13 patients receiving dapagliflozin experienced fractures of the bone vs. 0% receiving placebo. In the DAPA-CKD trial that enrolled patients with chronic kidney disease (eGFR 25 to 75 mL/minute/1.73 m2) and the DAPA-HF trial that enrolled patients with heart failure with reduced ejection fraction and eGFR 30 to 60 mL/minute/1.73 m2, the safety profile across eGFR subgroups was consistent with the known safety profile of dapagliflozin.

    Dehydration, hypotension

    Dapagliflozin may cause intravascular volume depletion, which may present as symptomatic hypotension or acute transient changes in serum creatinine. Patients at risk include those with dehydration or reduced volume status, particularly in patients with impaired renal function (eGFR less than 60 mL/minute/1.73 m2), the elderly, patients receiving diuretics or other medications that interfere with the renin-angiotensin-aldosterone (RAA) system [e.g., angiotensin-converting-enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs)], or patients with low systolic blood pressure. Volume status should be assessed and corrected before initiating dapagliflozin; saxagliptin in patients with one or more of these characteristics. Additionally, withholding food and fluids during surgical or other procedures may increase the risk for volume depletion, hypotension, and renal dysfunction. Dapagliflozin; saxagliptin should be temporarily discontinued while patients have restricted food and fluid intake. Monitor for signs and symptoms of hypotension or dehydration after initiating therapy.

    Balanitis, pyelonephritis, tissue necrosis, urinary tract infection (UTI), vaginitis

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors such as dapagliflozin may cause an increased risk for severe urinary tract infection (UTI), including urosepsis and pyelonephritis, and these cases can result in hospitalization. Patients should be told to report any signs of UTI and seek medical attention if they experience symptoms such as a feeling of burning when urinating or the need to urinate often or right away, pain in the lower part of the stomach area or pelvis, fever, or blood in the urine. Promptly treat if indicated if a UTI is suspected. Treatment with dapagliflozin also increases the risk of genital mycotic infections. Use dapagliflozin; saxagliptin cautiously in patients with a history of genital fungal infections, including vaginitis or balanitis, and uncircumcised males; these patients were more likely to develop genital mycotic infections during treatment with dapagliflozin. Monitor and treat appropriately if a genital mycotic infection occurs. All patients beginning therapy with a sodium-glucose co-transporter 2 (SGLT2) inhibitor or currently receiving dapagliflozin; saxagliptin should be closely monitored for a serious rare, life-threatening infection, called necrotizing fasciitis (tissue necrosis) of the perineum, also referred to as Fournier's gangrene. Patients should be warned to promptly seek medical attention if they experience any symptoms of tenderness, erythema, or swelling in the genital or perineal area, fever, or malaise, and such patients should be evaluated for necrotizing fasciitis. Cases have been reported in both females and males. Serious outcomes have included hospitalization, multiple surgeries, and death. If Fournier's gangrene is suspected, discontinue dapagliflozin; saxagliptin and institute prompt treatment with antibiotics and if necessary, surgical debridement. Closely monitor blood glucose levels, and provide appropriate alternative therapy for glycemic control.

    Bladder cancer

    Dapagliflozin; saxagliptin should not be used in patients with active bladder cancer. In patients with prior history of bladder cancer, consider the benefits of glycemic control versus unknown risks for cancer recurrence, as data is insufficient to determine whether dapagliflozin has an effect on pre-existing bladder tumors. Across 22 clinical studies, newly diagnosed cases of bladder cancer were reported in 10/6,045 patients (0.17%) treated with dapagliflozin and 1/3,512 patients (0.03%) treated with placebo or comparator. After excluding patients in whom exposure to study drug was less than 1 year at the time of diagnosis of bladder cancer, there were 4 cases with dapagliflozin and no cases with placebo or comparator. Bladder cancer risk factors and hematuria (a potential indicator of preexisting tumors) were balanced between treatment arms at baseline. There were too few cases to determine whether the emergence of these events is related to dapagliflozin.

    Adrenal insufficiency, hypoglycemia, hypothyroidism, malnutrition, pituitary insufficiency

    Conditions that predispose patients to developing hypoglycemia may alter antidiabetic agent needs, and may require close monitoring during the use of dapagliflozin; saxagliptin. Conditions associated with hypoglycemia include debilitated physical condition, drug interactions, malnutrition, uncontrolled adrenal insufficiency, pituitary insufficiency or hypothyroidism. More frequent blood glucose monitoring may be necessary in patients with these conditions. Insulin and insulin secretagogues are also known to cause hypoglycemia. Dapagliflozin; saxagliptin can increase the risk of hypoglycemia when combined with insulin or an insulin secretagogue. Therefore, a lower dose of insulin or insulin secretagogue may be required to minimize the risk of hypoglycemia when used in combination with dapagliflozin; saxagliptin.

    Fever, hypercortisolism, hyperglycemia, hyperthyroidism

    Conditions that predispose patients to developing hyperglycemia may alter dapagliflozin; saxagliptin efficacy. Hyperglycemia related conditions include drug interactions, female hormonal changes, high fever, severe psychological stress, and uncontrolled hypercortisolism or hyperthyroidism. More frequent blood glucose monitoring may be necessary in patients with these conditions.

    Pancreatitis

    After initiation of dapagliflozin; saxagliptin, observe patients for signs and symptoms of pancreatitis. If pancreatitis is suspected, promptly discontinue dapagliflozin; saxagliptin and initiate appropriate management. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using dapagliflozin; saxagliptin.

    Arthralgia

    Cases of severe, sometimes disabling, arthralgia (joint pain) have been reported with the use of dipeptidyl peptidase-4 (DPP-4) inhibitors, including saxagliptin. Advise patients not to discontinue therapy but to contact their health care professional immediately if they experience severe and persistent joint pain while taking dapagliflozin; saxagliptin. Consider saxagliptin as a possible cause of joint pain and discontinue if appropriate. The FDA has identified 33 cases of severe arthralgia with the use of DPP-4 inhibitors, all of which resulted in substantial reduction of the patient’s prior level of activity and, in 10 cases, required hospitalization. In the reported cases, the onset of symptoms occurred from 1 day to several years after the start of therapy with a DPP-4 inhibitor. Symptoms resolved with discontinuation of therapy, usually in less than a month; however, some patients experienced a recurrence of joint pain when restarting the same drug or switching to another DPP-4 inhibitor.

    Heart failure

    Use dapagliflozin; saxagliptin with caution in patients who have a history of or who have increased risk factors for heart failure, including patients with existing cardiac disease or kidney disease. Observe patients receiving dapagliflozin; saxagliptin for signs and symptoms of heart failure. If heart failure develops, consider discontinuing the drug. An increased risk of hospitalization for heart failure has been reported in patients receiving saxagliptin in a randomized, placebo-controlled postmarketing trial (SAVOR). The study included 16,492 patients with type 2 diabetes who had either a history of cardiovascular events or a risk for cardiovascular events. Patients were randomized to receive either saxagliptin therapy (n = 613) or placebo (n = 609) over a median of 2.1 years. Saxagliptin did not reduce or increase the risk of the primary composite end point of cardiovascular death, myocardial infarction, or ischemic stroke. However, 3.5% of patients in the saxagliptin group were hospitalized for heart failure compared to 2.8% of patients in the placebo group (HR 1.27, 95% CI 1.07 to 1.51; p = 0.007). The SAVOR trial was not specifically designed to assess heart failure risk.

    Hypercholesterolemia

    Dose-related increases in LDL cholesterol (LDL-C) may occur with dapagliflozin, and these changes may require treatment or adjustment of previous therapy in patients with pre-existing hypercholesterolemia. Monitor LDL-C and treat per standard of care after initiating dapagliflozin; saxagliptin therapy.

    Geriatric

    Geriatric patients receiving dapagliflozin monotherapy experienced a higher incidence of adverse reactions related to reduced intravascular volume and renal impairment or failure compared to patients treated with placebo. In addition, greater sensitivity of some geriatric individuals to saxagliptin cannot be ruled out, particularly if the geriatric patient has co-existing cardiac or kidney disease, which may increase the risk for heart failure or renal impairment in some geriatric patients. Observe patients receiving dapagliflozin; saxagliptin for signs and symptoms of heart failure, and if heart failure develops, consider discontinuing the drug and monitoring for diabetic control. Dose adjustment of saxagliptin based on renal function may be needed. Periodic renal function assessment is recommended during use. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, the use of antidiabetic medications should include monitoring (e.g., periodic blood glucose) for effectiveness based on desired goals for that individual and to identify complications of treatment such as hypoglycemia or impaired renal function.

    Pregnancy

    There are no adequate and well-controlled studies of dapagliflozin; saxagliptin or its individual components in pregnant women; a drug-associated risk for major birth defects or miscarriage cannot be determined. Based on animal data showing adverse renal effects, dapagliflozin is not recommended during the second and third trimesters of pregnancy. In animal studies, adverse renal pelvic and tubular dilatation were evident at the lowest tested dapagliflozin dose which was approximately 15-times clinical exposure from a 10 mg dose. When dapagliflozin was studied in rabbits during intervals coinciding with the first trimester period of organogenesis in humans, no developmental toxicities were observed at any dose tested. During pregnancy, consider appropriate alternative therapies, especially during the second and third trimesters. The potential risks to human kidney development are of concern. Saxagliptin does cross the placenta to the fetus in pregnant rats. Saxagliptin was not teratogenic at any dose tested when administered to pregnant rats and rabbits during periods of organogenesis. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes mellitus and gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.

    Breast-feeding

    There is no information regarding the presence of dapagliflozin; saxagliptin in human milk, the effects on breast-feeding infants, or the effects on milk production. Since dapagliflozin and saxagliptin are present in the milk of lactating rats and human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be a risk to the developing human kidney. Due to the potential for serious adverse reactions in a breast-feeding infant, breast-feeding during use of dapagliflozin; saxagliptin is not recommended.[61790] Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected.[46303] Metformin monotherapy may also be a consideration; data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies.[31407] [31408] [31409] Tolbutamide is usually considered compatible with breast-feeding.[27500] Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide.[31568] If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.[46104]

    Children, infants

    The safety and effectiveness of dapagliflozin; saxagliptin have not been established in adolescents and children less than 18 years of age. Use of dapagliflozin in infants is not indicated due to the potential harm to the developing human kidneys.

    Laboratory test interference

    Monitoring of glycemic control with urine glucose tests and the 1,5 Anhydroglucitol assay (1,5-AG assay) is not recommended in patients receiving dapagliflozin; saxagliptin due to laboratory test interference from dapagliflozin. Use of urine glucose tests will result in positive urine glucose tests, and measurements of 1,5-AG are unreliable. Use alternative methods to monitor glycemic control.

    ADVERSE REACTIONS

    Severe

    renal failure (unspecified) / Delayed / 0.8-1.4
    angioedema / Rapid / 0.3-0.3
    anaphylactoid reactions / Rapid / 0.3-0.3
    pancreatitis / Delayed / 0.2-0.2
    new primary malignancy / Delayed / 0-0.2
    exfoliative dermatitis / Delayed / Incidence not known
    pemphigus / Delayed / Incidence not known
    heart failure / Delayed / Incidence not known
    diabetic ketoacidosis / Delayed / Incidence not known
    rhabdomyolysis / Delayed / Incidence not known
    bone fractures / Delayed / Incidence not known
    necrotizing fasciitis / Delayed / Incidence not known
    tissue necrosis / Early / Incidence not known

    Moderate

    vaginitis / Delayed / 6.9-8.4
    candidiasis / Delayed / 2.7-8.4
    cystitis / Delayed / 4.3-5.7
    prostatitis / Delayed / 4.3-5.7
    balanitis / Delayed / 2.7-2.8
    hyperlipidemia / Delayed / 0-2.5
    hypercholesterolemia / Delayed / 2.1-2.5
    constipation / Delayed / 1.9-2.2
    hyperphosphatemia / Delayed / 1.7-1.7
    lymphopenia / Delayed / 0.5-1.5
    hypoglycemia / Early / 0-1.0
    hypotension / Rapid / 0.4-0.4
    hypovolemia / Early / 0.4-0.4
    orthostatic hypotension / Delayed / 0.4-0.4
    dehydration / Delayed / 0.4-0.4
    bullous rash / Early / Incidence not known
    thrombocytopenia / Delayed / Incidence not known

    Mild

    infection / Delayed / 2.7-7.7
    pharyngitis / Delayed / 6.3-6.6
    headache / Early / 4.3-4.3
    increased urinary frequency / Early / 2.9-3.8
    diarrhea / Early / 3.7-3.7
    back pain / Delayed / 3.3-3.3
    sinusitis / Delayed / 2.6-2.9
    nausea / Early / 2.5-2.8
    influenza / Delayed / 2.3-2.7
    abdominal pain / Early / 1.7-2.4
    arthralgia / Delayed / 2.4-2.4
    vomiting / Early / 2.2-2.3
    rash / Early / 0.2-1.5
    urticaria / Rapid / 0-1.5
    diuresis / Early / 10.0
    polyuria / Early / Incidence not known

    DRUG INTERACTIONS

    Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Aspirin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Acetohexamide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Adagrasib: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with adagrasib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A substrate; adagrasib is a strong CYP3A inhibitor. Coadministration of another strong CYP3A inhibitor increased the saxagliptin AUC up to 3.7-fold.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amiodarone: (Minor) Monitor patients for hypoglycemia if saxagliptin and amiodarone are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as amiodarone.
    Amlodipine; Benazepril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Olmesartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Valsartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Amoxicillin; Clarithromycin; Omeprazole: (Major) The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as clarithromycin. The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia, especially with antidiabetic drugs metabolized via CYP3A4/5. Careful monitoring of blood glucose is recommended. (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Amphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Amphetamine; Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Angiotensin II receptor antagonists: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Apalutamide: (Moderate) Monitor for increased blood sugars if coadministration of saxagliptin with apalutamide is necessary. Saxagliptin is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased saxagliptin exposure by 76%.
    Aprepitant, Fosaprepitant: (Moderate) Use caution if saxagliptin and aprepitant, fosaprepitant are used concurrently and monitor for an increase in saxagliptin-related adverse effects, for several days after administration of a multi-day aprepitant regimen. Saxagliptin is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of saxagliptin. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
    Articaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Aspirin, ASA: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Caffeine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Carisoprodol: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Omeprazole: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Oxycodone: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Aspirin, ASA; Pravastatin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Atazanavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as atazanavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atazanavir; Cobicistat: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively. (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as atazanavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    atypical antipsychotic: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Azelastine; Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Azilsartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Azilsartan; Chlorthalidone: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Beclomethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Benazepril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Bendroflumethiazide; Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Benzphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Betamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bismuth Subsalicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
    Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Budesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Budesonide; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Bumetanide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Bumetanide has been associated with hyperglycemia, possibly due to potassium depletion, and, glycosuria has been reported. Because of this, a potential pharmacodynamic interaction exists between bumetanide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
    Bupivacaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Candesartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Captopril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbinoxamine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbinoxamine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Ceritinib: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with ceritinib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; ceritinib is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chloramphenicol: (Minor) Monitor patients for hypoglycemia if saxagliptin and chloramphenicol are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as chloramphenicol.
    Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the dipeptidyl peptidase-4 inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent. (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the SGLT2 inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
    Chlorothiazide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Chlorpropamide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Chlorthalidone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Chlorthalidone; Clonidine: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Ciclesonide: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Clarithromycin: (Major) The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as clarithromycin. The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia, especially with antidiabetic drugs metabolized via CYP3A4/5. Careful monitoring of blood glucose is recommended. (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Cobicistat: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Codeine; Phenylephrine; Promethazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Conjugated Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Conjugated Estrogens; Bazedoxifene: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Conjugated Estrogens; Medroxyprogesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Corticosteroids: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells. (Moderate) Monitor blood glucose during concomitant corticosteroid and SGLT2 inhibitor use; a SGLT2 inhibitor dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
    Dalfopristin; Quinupristin: (Major) The manufacturer recommends limiting the saxagliptin dose to 2.5 mg/day if used with strong CYP3A4/5 inhibitors such as dalfopristin; quinupristin. The metabolism of saxagliptin is primarily mediated by CYP3A4/5, and maximum serum concentrations and exposure of saxagliptin are increased when administered with strong inhibitors. Monitor patients for hypoglycemia if these drugs are used together.
    Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Minor) Monitor patients taking saxagliptin with darunavir for changes in glycemic control.The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP3A4/5 inhibitors such as darunavir. In addition, new onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Onset averaged approximately 63 days after initiating protease inhibitor therapy but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Darunavir; Cobicistat: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Minor) Monitor patients taking saxagliptin with darunavir for changes in glycemic control.The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP3A4/5 inhibitors such as darunavir. In addition, new onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Onset averaged approximately 63 days after initiating protease inhibitor therapy but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Minor) Monitor patients taking saxagliptin with darunavir for changes in glycemic control.The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP3A4/5 inhibitors such as darunavir. In addition, new onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Onset averaged approximately 63 days after initiating protease inhibitor therapy but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir : (Moderate) Closely monitor blood glucose levels if dasabuvir; ombitasvir; paritaprevir; ritonavir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as dasabuvir; ombitasvir; paritaprevir; ritonavir.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as ritonavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors, such as ritonavir. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Deflazacort: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Delavirdine: (Major) The manufacturer recommends limiting the saxagliptin dose to 2.5 mg/day if used with strong CYP3A4/5 inhibitors such as delavirdine. The metabolism of saxagliptin is primarily mediated by CYP3A4/5, and maximum serum concentrations and exposure of saxagliptin are increased when administered with strong inhibitors. Monitor patients for hypoglycemia if these drugs are used together.
    Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Desogestrel; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Dexamethasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextroamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
    Dienogest; Estradiol valerate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Diethylpropion: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Diethylstilbestrol, DES: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Digoxin: (Moderate) The AUC and Cmax of digoxin may be increased in the presence of saxagliptin. Dosage adjustment of digoxin is not recommended, but patients receiving these 2 drugs at the same time should be monitored closely.
    Diltiazem: (Minor) Saxagliptin did not meaningfully alter the pharmacokinetics of diltiazem. However, coadministration increased the maximum serum saxagliptin concentration by 63% and the systemic exposure by 2.1-fold. As expected, the maximum serum concentration of the saxagliptin active metabolite was decreased by 44% and the systemic exposure was decreased by 36%. Saxagliptin dose adjustment is not advised when coadministered with diltiazem.
    Diphenhydramine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving disopyramide concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Dobutamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dopamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Doxapram: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Dronedarone: (Minor) Monitor patients for hypoglycemia if saxagliptin and dronedarone are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as dronedarone.
    Drospirenone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Estetrol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Elagolix; Estradiol; Norethindrone acetate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Elbasvir; Grazoprevir: (Moderate) Administering metformin; saxagliptin with elbasvir; grazoprevir may result in elevated saxagliptin plasma concentrations. Saxagliptin is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events. (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with cobicistat due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; cobicistat is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Enalapril, Enalaprilat: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Ephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Ephedrine; Guaifenesin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Eprosartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Erythromycin: (Minor) Saxagliptin plasma concentrations are expected to increase in the presence of moderate CYP 3A4/5 inhibitors such as erythromycin, but saxagliptin dose adjustment is not advised.
    Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Esterified Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Esterified Estrogens; Methyltestosterone: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estradiol Cypionate; Medroxyprogesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estradiol; Levonorgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norgestimate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Progesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Estropipate: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethacrynic Acid: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Ethinyl Estradiol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norelgestromin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone Acetate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethotoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients. (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Etonogestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Etonogestrel; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Fenofibrate: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor (DPP-4) and fibric acid derivative use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fenofibric Acid: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor (DPP-4) and fibric acid derivative use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Fibric acid derivatives: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor (DPP-4) and fibric acid derivative use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and fibric acid derivative use; a SGLT2 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fludrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Flunisolide: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluoxetine: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 (DPP-4) inhibitor and fluoxetine use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and fluoxetine use; a SGLT2 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fluticasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Salmeterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluticasone; Vilanterol: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fluvoxamine: (Minor) Monitor patients for hypoglycemia if saxagliptin and fluvoxamine are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as fluvoxamine.
    Formoterol; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Fosamprenavir: (Moderate) Closely monitor for changes in glycemic control and hyperglycemia if saxagliptin is coadministered with fosamprenavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Fosinopril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Fosphenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients. (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Furosemide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
    Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
    Gemfibrozil: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor (DPP-4) and fibric acid derivative use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
    Glimepiride: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Glimepiride; Rosiglitazone: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Glipizide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Glipizide; Metformin: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Glyburide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Glyburide; Metformin: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Grapefruit juice: (Minor) Saxagliptin plasma concentrations are expected to increase in the presence of moderate CYP 3A4/5 inhibitors such as grapefruit juice, but saxagliptin dose adjustment is not advised.
    Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Guaifenesin; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Hydantoins: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients. (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Hydrocodone; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Hydrocortisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Hydroxychloroquine: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor (DPP-4) and hydroxychloroquine use; a DPP-4 dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and hydroxychloroquine use; a SGLT2 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Ibuprofen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Imatinib: (Minor) Monitor patients for hypoglycemia if saxagliptin and imatinib, STI-571 are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as imatinib, STI-571.
    Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like saxagliptin. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
    Indinavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. Limit the saxagliptin dose to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as indinavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Insulin Aspart: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Aspart; Insulin Aspart Protamine: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Degludec: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Degludec; Liraglutide: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Detemir: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Glargine: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Glargine; Lixisenatide: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Glulisine: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Lispro: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin Lispro; Insulin Lispro Protamine: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulin, Inhaled: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Insulins: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Irbesartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with saxagliptin may result in increased serum concentrations of saxagliptin. Saxagliptin is a substrate of the hepatic isoenzyme CYP3A4); isavuconazole, the active moiety of isavuconazonium, is an inhibitor of CYP3A4. Caution and close monitoring for adverse effects, such as hypoglycemia, are advised if these drugs are used together.
    Isocarboxazid: (Moderate) Monitor blood glucose during concomitant dapagliflozin and monoamine oxidase inhibitor (MAOI) use; a dapagliflozin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and monoamine oxidase inhibitor (MAOI) use; a saxagliptin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Minor) Coadministration of saxagliptin and rifampin decreased the maximum serum saxagliptin concentration by 53% and the systemic exposure by 76%. As expected, the maximum serum concentration of the saxagliptin active metabolite was increased by 39%; no significant change in the systemic exposure was noted. Saxagliptin dose adjustment is not advised when coadministered with rifampin, as the plasma dipeptidyl peptidase-4 activity over a 24-hour period was unaffected.
    Isoniazid, INH; Rifampin: (Minor) Coadministration of saxagliptin and rifampin decreased the maximum serum saxagliptin concentration by 53% and the systemic exposure by 76%. As expected, the maximum serum concentration of the saxagliptin active metabolite was increased by 39%; no significant change in the systemic exposure was noted. Saxagliptin dose adjustment is not advised when coadministered with rifampin, as the plasma dipeptidyl peptidase-4 activity over a 24-hour period was unaffected.
    Isophane Insulin (NPH): (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Isoproterenol: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Itraconazole: (Major) Do not exceed 2.5 mg PO daily of saxagliptin when combined with itraconazole; monitor for evidence of hypoglycemia. Itraconazole is a strong CYP3A4 inhibitor; saxagliptin is a CYP3A4 substrate. Coadministration of another strong CYP3A4 inhibitor increased the saxagliptin AUC up to 3.7-fold.
    Ketoconazole: (Major) Saxagliptin is a p-glycoprotein substrate, and the metabolism of saxagliptin is primarily mediated by CYP3A4/5. Ketoconazole is a strong inhibitor of both p-glycoprotein and CYP3A4/5. Saxagliptin did not meaningfully alter the pharmacokinetics of ketoconazole, but coadministration increased the maximum serum saxagliptin concentration by 62% and the systemic exposure by 2.5-fold. As expected, the maximum serum concentration of the saxagliptin active metabolite was decreased by 95% and the systemic exposure was decreased by 91%. In another study, the maximum serum saxagliptin concentration increased by 2.4-fold and the systemic exposure increased by 3.4-fold. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP 3A4/5 inhibitor such as ketoconazole.
    Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
    Lansoprazole; Amoxicillin; Clarithromycin: (Major) The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as clarithromycin. The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia, especially with antidiabetic drugs metabolized via CYP3A4/5. Careful monitoring of blood glucose is recommended. (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Lente Insulin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Letermovir: (Moderate) An increase in the plasma concentration of saxagliptin may occur if given with letermovir. Limit the saxagliptin dose to 2.5 mg once per day if the patient is also receiving cyclosporine because the magnitude of this interaction may be increased. Saxagliptin is primarily metabolized by CYP3A4. Letermovir is a moderate CYP3A4 inhibitor; however, when given with cyclosporine, the combined effect on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor. Concurrent administration with another strong CYP3A4 inhibitor increased the maximum plasma concentration and exposure of saxagliptin by 1.62- and 2.45-fold, respectively.
    Leuprolide; Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levobetaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Levoketoconazole: (Major) Saxagliptin is a p-glycoprotein substrate, and the metabolism of saxagliptin is primarily mediated by CYP3A4/5. Ketoconazole is a strong inhibitor of both p-glycoprotein and CYP3A4/5. Saxagliptin did not meaningfully alter the pharmacokinetics of ketoconazole, but coadministration increased the maximum serum saxagliptin concentration by 62% and the systemic exposure by 2.5-fold. As expected, the maximum serum concentration of the saxagliptin active metabolite was decreased by 95% and the systemic exposure was decreased by 91%. In another study, the maximum serum saxagliptin concentration increased by 2.4-fold and the systemic exposure increased by 3.4-fold. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP 3A4/5 inhibitor such as ketoconazole.
    Levonorgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levonorgestrel; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levothyroxine: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed. (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Levothyroxine; Liothyronine (Porcine): (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed. (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Levothyroxine; Liothyronine (Synthetic): (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed. (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Lidocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
    Liothyronine: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed. (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Lisdexamfetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Lisinopril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Lithium: (Moderate) Concomitant use of sodium-glucose cotransporter 2 (SGLT2) inhibitors with lithium may decrease serum lithium concentrations. Monitor serum lithium concentration more frequently during SGLT2 inhibitor initiation and dosage changes. (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic therapy. Blood glucose concentrations should be closely monitored if lithium is taken by the patient. Dosage adjustments may be necessary.
    Lonafarnib: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with lonafarnib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; lonafarnib is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the saxagliptin AUC up to 3.7-fold.
    Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Loop diuretics: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Lopinavir; Ritonavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as ritonavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors, such as ritonavir. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients, including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Loratadine; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
    Losartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Lovastatin; Niacin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may decrease the systemic exposure of saxagliptin; if used together, monitor blood glucose concentrations closely. Saxagliptin is a substrate of CYP3A (primary). Lumacaftor is a strong CYP3A inducer. Induction of saxagliptin metabolism through the CYP3A pathway may lead to decreased drug efficacy.
    Mafenide: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Magnesium Salicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Mecasermin rinfabate: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Medroxyprogesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Mestranol; Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Methamphetamine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction. (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Methenamine; Sodium Salicylate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Methyclothiazide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Methylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Methylprednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Metolazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
    Midodrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Mifepristone: (Moderate) Monitor patients for hypoglycemia if saxagliptin and mifepristone are used together; dosage reduction of saxagliptin may be needed in some patients. In patients taking CYP3A substrates, the manufacturer of mifepristone recommends that the lowest dose of the CYP3A substrate that achieves the proper clinical response and tolerability be used. When potent CYP3A inhibitors are used, the initial dose of saxagliptin should be limited to 2.5 mg/day; mifepristone is a CYP3A inhibitor and has been noted to increase concentrations of CYP3A substrates. Due to the slow elimination of mifepristone from the body, such interactions may be observed for a prolonged period after mifepristone administration.
    Moexipril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Monoamine oxidase inhibitors: (Moderate) Monitor blood glucose during concomitant dapagliflozin and monoamine oxidase inhibitor (MAOI) use; a dapagliflozin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and monoamine oxidase inhibitor (MAOI) use; a saxagliptin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Naproxen; Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Nefazodone: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP 3A4/5 inhibitor such as nefazodone.
    Nelfinavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. Limit the saxagliptin dose to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as nelfinavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
    Nirmatrelvir; Ritonavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as ritonavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors, such as ritonavir. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Norepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norgestimate; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
    Olanzapine; Fluoxetine: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 (DPP-4) inhibitor and fluoxetine use; a DPP-4 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and fluoxetine use; a SGLT2 inhibitor dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Olmesartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Olopatadine; Mometasone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Ombitasvir; Paritaprevir; Ritonavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as ritonavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors, such as ritonavir. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
    Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
    Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
    Penbutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine. (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
    Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
    Perindopril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Perindopril; Amlodipine: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Phendimetrazine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenelzine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and monoamine oxidase inhibitor (MAOI) use; a dapagliflozin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and monoamine oxidase inhibitor (MAOI) use; a saxagliptin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phentermine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phentermine; Topiramate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients. (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Pioglitazone; Glimepiride: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Posaconazole: (Minor) Monitor patients for hypoglycemia if saxagliptin and posaconazole are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as posaconazole.
    Prednisolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Prednisone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Prilocaine; Epinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Progesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Progestins: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Promethazine; Phenylephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Pseudoephedrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Quinapril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Quinine: (Moderate) Monitor patients for hypoglycemia if saxagliptin and quinine are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as quinine.
    Quinolones: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitors and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and quinolone use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Racepinephrine: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Ramipril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Regular Insulin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Regular Insulin; Isophane Insulin (NPH): (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Relugolix; Estradiol; Norethindrone acetate: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ribociclib: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with ribociclib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; ribociclib is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Ribociclib; Letrozole: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with ribociclib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; ribociclib is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Rifampin: (Minor) Coadministration of saxagliptin and rifampin decreased the maximum serum saxagliptin concentration by 53% and the systemic exposure by 76%. As expected, the maximum serum concentration of the saxagliptin active metabolite was increased by 39%; no significant change in the systemic exposure was noted. Saxagliptin dose adjustment is not advised when coadministered with rifampin, as the plasma dipeptidyl peptidase-4 activity over a 24-hour period was unaffected.
    Ritonavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as ritonavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors, such as ritonavir. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Sacubitril; Valsartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Salicylates: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Salsalate: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Saquinavir: (Major) The metabolism of saxagliptin is primarily mediated by CYP3A4/5. Limit the saxagliptin dose to 2.5 mg once daily when coadministered with a strong CYP 3A4/5 inhibitor such as saquinavir. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Segesterone Acetate; Ethinyl Estradiol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
    Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
    Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Streptogramins: (Major) The manufacturer recommends limiting the saxagliptin dose to 2.5 mg/day if used with strong CYP3A4/5 inhibitors such as dalfopristin; quinupristin. The metabolism of saxagliptin is primarily mediated by CYP3A4/5, and maximum serum concentrations and exposure of saxagliptin are increased when administered with strong inhibitors. Monitor patients for hypoglycemia if these drugs are used together.
    Sulfadiazine: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfasalazine: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfonamides: (Moderate) Monitor blood glucose during concomitant dipeptidyl peptidase-4 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and sulfonamide use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Sulfonylureas: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Sympathomimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Tacrolimus: (Moderate) Both cyclosporine and tacrolimus have been reported to cause hyperglycemia. Tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. Both of these drugs may have direct beta-cell toxicity; the effects from cyclosporine may be dose-related. Patients should be monitored for changes in glycemic control if therapy with either of these immunosuppressant drugs is initiated in patients receiving dapagliflozin. (Moderate) Tacrolimus has been reported to cause hyperglycemia. Monitor for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
    Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. The dosing of antidiabetic agents may require adjustment in patients who receive tegaserod concomitantly. (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.The dosing of antidiabetic agents may require adjustment in patients who receive tegaserod concomitantly.
    Telmisartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Telmisartan; Amlodipine: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Thyroid hormones: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, discontinued or doses changed. (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Tipranavir: (Major) The manufacturer recommends limiting the saxagliptin dose to 2.5 mg/day if used with strong CYP3A4/5 inhibitors such as tipranavir boosted with ritonavir. The metabolism of saxagliptin is primarily mediated by CYP3A4/5, and maximum serum concentrations and exposure of saxagliptin are increased when administered with strong inhibitors. Monitor patients for hypoglycemia if these drugs are used together. New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have also been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated. (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Tolazamide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Tolbutamide: (Moderate) A lower sulfonylurea dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with a sulfonylurea, the incidence of hypoglycemia was increased compared to a placebo used in combination with a sulfonylurea.
    Torsemide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
    Trandolapril: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Trandolapril; Verapamil: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin-converting enzyme (ACE) inhibitor use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Minor) Saxagliptin plasma concentrations are expected to increase in the presence of moderate CYP 3A4/5 inhibitors such as verapamil, but saxagliptin dose adjustment is not advised.
    Tranylcypromine: (Moderate) Monitor blood glucose during concomitant dapagliflozin and monoamine oxidase inhibitor (MAOI) use; a dapagliflozin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and monoamine oxidase inhibitor (MAOI) use; a saxagliptin dose adjustment may be necessary. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Triamcinolone: (Moderate) Monitor blood glucose during concomitant corticosteroid and dipeptidyl peptidase-4 (DPP-4) inhibitor use; a DPP-4 dose adjustment may be necessary. Corticosteroids may increase blood glucose concentrations. Risk factors for impaired glucose tolerance due to corticosteroids include the corticosteroid dose and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Triamterene: (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
    Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity. (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
    Tucatinib: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with tucatinib due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; tucatinib is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Ultralente Insulin: (Moderate) A lower insulin dose may be required when used in combination with saxagliptin to minimize the risk of hypoglycemia. When saxagliptin was used in combination with insulin, the incidence of hypoglycemia was increased compared to a placebo used in combination with insulin.
    Valsartan: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
    Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood glucose during concomitant SGLT2 inhibitor and angiotensin receptor blocker use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Verapamil: (Minor) Saxagliptin plasma concentrations are expected to increase in the presence of moderate CYP 3A4/5 inhibitors such as verapamil, but saxagliptin dose adjustment is not advised.
    Vonoprazan; Amoxicillin; Clarithromycin: (Major) The saxagliptin dose is limited to 2.5 mg once daily when coadministered with a strong CYP3A4/5 inhibitor such as clarithromycin. The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia, especially with antidiabetic drugs metabolized via CYP3A4/5. Careful monitoring of blood glucose is recommended. (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Voriconazole: (Major) Limit the dose of saxagliptin to 2.5 mg PO once daily when administered with voriconazole due to significantly increased saxagliptin exposure. Saxagliptin is a CYP3A4 substrate; voriconazole is a strong CYP3A4 inhibitor. Coadministration of a strong CYP3A4 inhibitor with a single 100 mg dose of saxagliptin and a single 20 mg dose of saxagliptin increased the saxagliptin AUC by 2.45-fold and 3.67-fold, respectively.
    Zafirlukast: (Minor) Monitor patients for hypoglycemia if saxagliptin and zafirlukast are used together. The metabolism of saxagliptin is primarily mediated by CYP3A4/5; saxagliptin plasma concentrations may increase in the presence of moderate CYP 3A4/5 inhibitors such as zafirlukast.

    PREGNANCY AND LACTATION

    Pregnancy

    There are no adequate and well-controlled studies of dapagliflozin; saxagliptin or its individual components in pregnant women; a drug-associated risk for major birth defects or miscarriage cannot be determined. Based on animal data showing adverse renal effects, dapagliflozin is not recommended during the second and third trimesters of pregnancy. In animal studies, adverse renal pelvic and tubular dilatation were evident at the lowest tested dapagliflozin dose which was approximately 15-times clinical exposure from a 10 mg dose. When dapagliflozin was studied in rabbits during intervals coinciding with the first trimester period of organogenesis in humans, no developmental toxicities were observed at any dose tested. During pregnancy, consider appropriate alternative therapies, especially during the second and third trimesters. The potential risks to human kidney development are of concern. Saxagliptin does cross the placenta to the fetus in pregnant rats. Saxagliptin was not teratogenic at any dose tested when administered to pregnant rats and rabbits during periods of organogenesis. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes mellitus and gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.

    There is no information regarding the presence of dapagliflozin; saxagliptin in human milk, the effects on breast-feeding infants, or the effects on milk production. Since dapagliflozin and saxagliptin are present in the milk of lactating rats and human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be a risk to the developing human kidney. Due to the potential for serious adverse reactions in a breast-feeding infant, breast-feeding during use of dapagliflozin; saxagliptin is not recommended.[61790] Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected.[46303] Metformin monotherapy may also be a consideration; data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies.[31407] [31408] [31409] Tolbutamide is usually considered compatible with breast-feeding.[27500] Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide.[31568] If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.[46104]

    MECHANISM OF ACTION

    Combination products containing dapagliflozin and saxagliptin are used to improve glycemic control in type 2 diabetes mellitus. Clinicians may wish to consult the individual monographs for more information about each agent.
    Dapagliflozin: Dapagliflozin is an inhibitor of sodium-glucose co-transporter 2 (SGLT2), the transporter responsible for reabsorbing the majority of glucose filtered by the tubular lumen in the kidney. SGLT2 is expressed in the proximal renal tubules. By inhibiting SGLT2, dapagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion, improving blood glucose control.
    Saxagliptin: Saxagliptin is a competitive dipeptidyl peptidase-4 (DPP-4) inhibitor, which exerts its actions in patients with type 2 diabetes by slowing the inactivation of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic polypeptide (GIP). Both GLP-1 and GIP are released by the intestine throughout the day, and their concentrations are increased in response to a meal. Normally, both GLP-1 and GIP are inactivated by DPP-4 within minutes. The incretins are part of an endogenous system involved in the physiologic regulation of glucose homeostasis. When blood glucose concentrations are normal or elevated, GLP-1 and GIP increase insulin synthesis and release from pancreatic beta cells by intracellular signaling pathways involving cyclic AMP. GLP-1 also lowers glucagon secretion from pancreatic alpha cells leading to reduced hepatic glucose production, and GLP-1 slows gastric emptying time, which decreases postprandial glucose excursions. Saxagliptin increases insulin release and decreases glucagon concentrations in the circulation in a glucose-dependent manner; GLP-1 does not increase insulin secretion when the glucose concentration is less than 90 mg/dL. Saxagliptin is of benefit in patients with type 2 diabetes mellitus as their GLP-1 concentrations are decreased in response to a meal. Although GLP-1 concentrations are reduced, the insulin response to GLP-1 is preserved. Among patients with type 2 diabetes mellitus who receive saxagliptin, both fasting and postprandial serum glucose concentrations are reduced in a glucose-dependent manner. The long-term safety of DPP-4 inhibitors is currently under investigation as DPP-4 is not an enzyme specific for the breakdown of incretin hormones. In fact, DPP-4 is responsible for the metabolism of many peptides including pancreatic peptide YY, neuropeptide Y, and growth hormone-releasing hormone. DPP-4 is involved with T-cell activation and is expressed on lymphocytes as CD26. Long-term neurological or immunological consequences of inhibiting DPP-4 are unknown.

    PHARMACOKINETICS

    Dapagliflozin; saxagliptin is administered orally. The pharmacokinetics of dapagliflozin and saxagliptin were not affected in a clinically relevant manner when administered as the combination product dapagliflozin; saxagliptin tablets.
    Dapagliflozin: Dapagliflozin is approximately 91% protein bound. Dapagliflozin is mainly metabolized via O-glucuronidation by UGT1A9; CYP3A4-mediated metabolism is a minor clearance pathway in humans. Dapagliflozin is extensively metabolized, primarily to yield dapagliflozin 3-O-glucuronide, which is an inactive metabolite. Dapagliflozin 3-O-glucuronide accounted for 61% of a 50 mg [14C]-dapagliflozin dose and is the predominant drug-related component in human plasma. Elimination of dapagliflozin and related metabolites is primarily via the renal pathway. Following a dose of dapagliflozin, 75% and 21% total radioactivity is excreted in urine and feces, respectively. In urine, less than 2% of the dose is excreted as parent drug. In feces, approximately 15% of the dose is excreted as parent drug. Following a single oral dose of dapagliflozin 10 mg, the mean plasma terminal half-life is approximately 12.9 hours.
    Saxagliptin: In vitro, protein binding of saxagliptin and its active metabolite are negligible. Saxagliptin is a p-glycoprotein substrate and a cytochrome P450 3A4/5 enzyme system substrate. Metabolism of saxagliptin is primarily mediated by CYP3A4/5 to produce 5-hydroxy saxagliptin, which is one-half as potent as saxagliptin as a DPP-4 inhibitor. Thus, strong CYP 3A4/5 inhibitors or inducers will alter the pharmacokinetic parameters of saxagliptin and its active metabolite. Saxagliptin is both hepatic and renally eliminated; some active renal excretion of saxagliptin appears to occur. After a 50 mg oral, radiolabeled dose, 24% of the dose was excreted renally as saxagliptin, and 36% was excreted renally as 5-hydroxy saxagliptin. In addition to renal excretion, some fecal elimination also occurs. Of the administered radioactivity, 22% was recovered in the feces; some was excreted in the bile, and some was unabsorbed drug from the gastrointestinal tract. Among healthy patients who took a single 5 mg oral dose, the mean plasma terminal half-life was 2.5 hours for saxagliptin and 3.1 hours for 5-hydroxy saxagliptin. Inhibition of dipeptidyl peptidase-4 (DPP-4) enzyme by saxagliptin lasts for 24 hours. After an oral glucose load or meal, the circulating concentrations of active glucagon-like peptide-1 and glucose-dependent insulinotrophic polypeptide increased 2- to 3-fold. Also, glucagon concentrations decreased and glucose-dependent insulin secretion from pancreatic beta cells increased.
     
    Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP3A4/5, P-glycoprotein (P-gp)
    Dapagliflozin: Dapagliflozin and dapagliflozin 3-O-glucuronide neither inhibit CYP1A2, 2C9, 2C19, 2D6, or 3A4, nor induce CYP1A2, 2B6, or 3A4 based on in vitro studies. Dapagliflozin is a weak substrate of the P-glycoprotein (P-gp) active transporter, and dapagliflozin 3-O-glucuronide is a substrate for the OAT3 active transporter. Dapagliflozin or dapagliflozin 3-O-glucuronide did not meaningfully inhibit P-gp, OCT2, OAT1, or OAT3 active transporters. Overall, dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are P-gp, OCT2, OAT1, or OAT3 substrates.
    Saxagliptin: Saxagliptin is a CYP3A4/5 substrate. Neither saxagliptin nor its active metabolite are inhibitors of CYP isozymes 3A4, 2C9, 2D6, 1A2, 2C19, 2A6, 2E1, or 2B6 or inducers of CYP 3A4, 2B6, 2C9, or 1A2. Saxagliptin is a P-glycoprotein (P-gp) substrate but is not a significant inhibitor or inducer of P-gp. It is not an inhibitor of hOCT-2-mediated transport.

    Oral Route

    Dapagliflozin: Following oral administration of dapagliflozin, the maximum plasma concentration (Cmax) is usually attained within 2 hours under fasting state. The Cmax and AUC values increase dose-proportionally with increases in dapagliflozin dose within the therapeutic dose range. The absolute oral bioavailability is 78% following a 10 mg PO dose. Administration with a high-fat meal decreases the Cmax by up to 50% and prolongs the time to maximum concentration (Tmax) by approximately 1 hour, but does not alter AUC as compared with the fasted state. These changes are not considered to be clinically meaningful.
    Saxagliptin: After a 5 mg oral dose, the mean time to maximum (Tmax) concentration (Tmax) was 2 hours, and the mean Tmax of the active metabolite, 5-hydroxy saxagliptin, was 4 hours. Compared to fasting, administration of saxagliptin with a high-fat meal increased the Tmax by about 20 minutes, and the systemic exposure increased by 27%.