PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    GLP-1 Receptor Agonists for Obesity
    Incretin mimetics Antidiabetics

    BOXED WARNING

    Medullary thyroid carcinoma (MTC), multiple endocrine neoplasia syndrome type 2 (MEN 2), thyroid cancer, thyroid C-cell tumors

    Semaglutide is contraindicated in patients with a personal or family history of certain types of thyroid cancer, specifically thyroid C-cell tumors such as medullary thyroid carcinoma (MTC), or in patients with multiple endocrine neoplasia syndrome type 2 (MEN 2). Semaglutide has been shown to cause dose-dependent and treatment duration-dependent malignant thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. A statistically significant increase in cancer was observed in rats receiving semaglutide at all dose levels (greater than 2X human exposure). It is unknown whether semaglutide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans. Cases of MTC in patients treated with liraglutide, another GLP-1 receptor agonist, have been reported in the postmarketing period; the data in these reports are insufficient to establish or exclude a causal relationship between MTC and GLP-1 receptor agonist use in humans. In clinical trials, there were 7 reported cases of papillary thyroid carcinoma in patients treated with liraglutide and 1 case in a comparator-treated patient (1.5 vs. 0.5 cases per 1,000 patient-years). Most of these papillary thyroid carcinomas were less than 1 cm in greatest diameter and were diagnosed after thyroidectomy, which was prompted by finding on protocol-specified screening with serum calcitonin or thyroid ultrasound. Patients should be counseled on the potential risk and symptoms of thyroid tumors (e.g. a mass in the neck, dysphagia, dyspnea or persistent hoarseness). Although routine monitoring of serum calcitonin is of uncertain value in patients treated with semaglutide, if serum calcitonin is measured and found to be elevated, the patient should be referred to an endocrinologist for further evaluation.

    DEA CLASS

    Rx

    DESCRIPTION

    Incretin mimetic (GLP-1 receptor agonist); available as a once-weekly subcutaneous injection or as an oral tablet given once daily; not a first-line therapy due to the boxed warning regarding rodent C-cell tumors and the uncertain risk to humans
    Ozempic (injection) and Rybelsus (oral) product used to improve glycemic control in adults with type 2 diabetes mellitus (DM); injection also indicated to reduce the risk of non-fatal and fatal cardiovascular events (e.g., MI or stroke) if T2DM patient also has CV disease
    Separate product (Wegovy injection) used for weight reduction and maintenance in obese or overweight adults with at least 1 weight-related comorbidity

    COMMON BRAND NAMES

    OZEMPIC, Rybelsus, Wegovy

    HOW SUPPLIED

    OZEMPIC/Wegovy Subcutaneous Inj Sol: 0.25mg, 0.5mg, 0.5mL, 0.75mL, 1mg, 1mL, 1.34mg, 1.7mg, 2.4mg
    Rybelsus Oral Tab: 3mg, 7mg, 14mg

    DOSAGE & INDICATIONS

    For the treatment of type 2 diabetes mellitus in combination with diet and exercise.
    Subcutaneous dosage
    Adults

    Initially, 0.25 mg subcutaneously once every 7 days (weekly) at any time of day, with or without meals. Must titrate for effective glycemic control. After 4 weeks increase to 0.5 mg subcutaneously once weekly. If needed, the dosage may be increased after 4 weeks. Max: 1 mg/week subcutaneously. MISSED DOSE: If a dose is missed, give as soon as possible within 5 days after the missed dose. If more than 5 days have passed, skip the missed dose and administer on the next scheduled day. The day of weekly administration can be changed if needed, as long as the time between 2 doses is at least 2 days (more than 48 hours). USE WITH OTHER MEDICATIONS: When semaglutide is added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce the risk of hypoglycemia. The manufacturer of insulin detemir recommends initiating therapy with insulin detemir at 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist. Consider reducing the dose of any concomitantly administered insulin secretagogues (e.g., sulfonylureas) to reduce the risk of hypoglycemia. There is no equivalent dose of semaglutide oral tablet for semaglutide subcutaneous injection; follow the label directions for switch of dosage forms.

    Oral dosage
    Adults

    Initially, 3 mg PO once daily for 30 days. Semaglutide oral tablets must be taken at least 30 minutes before the first food, beverage, or other oral medications of the day with no more than 4 ounces of plain water. The 3 mg dose is intended for initial titration and is not effective for glycemic control. After 30 days, increase the dose to 7 mg PO once daily. If additional glycemic control is needed after at least 30 days on the 7 mg dose, may increase to 14 mg PO once daily. Taking two 7 mg tablets to achieve a 14 mg dose is not recommended. SWITCHING FROM SEMAGLUTIDE ORAL TABLETS TO SEMAGLUTIDE SUBCUTANEOUS INJECTION: Patients taking 14 mg PO once daily can be transitioned to semaglutide 0.5 mg subcutaneously once weekly, beginning the day after the last dose of oral semaglutide. SWITCHING FROM SEMAGLUTIDE SUBCUTANEOUS INJECTION TO SEMAGLUTIDE ORAL TABLET: Patients treated with semaglutide 0.5 mg subcutaneously once weekly can be transitioned to semaglutide 7 mg or 14 mg PO once daily. Initiate oral semaglutide up to 7 days after the last semaglutide subcutaneous injection. There is no equivalent dose of semaglutide oral tablet for semaglutide subcutaneous injection 1 mg.

    For the reduction of cardiovascular mortality and CV events (e.g., non-fatal myocardial infarction or non-fatal stroke) in type 2 diabetes mellitus patients who also have established CV disease.
    Subcutaneous dosage
    Adults

    Initially, 0.25 mg subcutaneously once every 7 days (weekly) at any time of day, with or without meals. Must titrate for effective glycemic control. After 4 weeks, increase to 0.5 mg subcutaneously once weekly. If needed, the dosage may be increased after 4 weeks. Max: 1 mg/week subcutaneously. MISSED DOSE: If a dose is missed, give as soon as possible within 5 days after the missed dose. If more than 5 days have passed, skip the missed dose and administer on the next scheduled day. The day of weekly administration can be changed if needed, as long as the time between 2 doses is at least 2 days (more than 48 hours).[62656] USE WITH OTHER MEDICATIONS: When semaglutide is added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce the risk of hypoglycemia. The manufacturer of insulin detemir recommends initiating insulin detemir at 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist.[22300] Consider reducing the dose of any concomitantly administered insulin secretagogues (e.g., sulfonylureas) to reduce the risk of hypoglycemia.[62656] CLINICAL TRIALS: In addition to improving glycemic control, a long-term, multinational, randomized, double-blind, placebo-controlled trial (Sustain 6) of 3,297 patients with inadequately controlled type 2 DM and established, cardiovascular (CV) disease or high-risk of CV events reported that the risk of major CV adverse events (MACE: CV death, first occurrence of non-fatal myocardial infarction, or non-fatal stroke) was significantly reduced in the semaglutide group (6.6%) compared to the placebo group (8.9%) (HR 0.74; 95% CI 0.58 to 0.95; p less than 0.001 for noninferiority).[64937]

    For the treatment of obesity and for chronic weight management as an adjunct to a reduced-calorie diet and increased physical activity.
    Subcutaneous dosage
    Adults

    Weeks 1 to 4: Give 0.25 mg subcutaneously once weekly to reduce gastrointestinal (GI) symptoms associated with initial therapy. Then, follow the recommended titration schedule. Weeks 5 through 8: 0.5 mg subcutaneously once weekly. Weeks 9 through 12: 1 mg subcutaneously once weekly. Weeks 13 through 16: 1.7 mg subcutaneously once weekly. Week 17 and onward: 2.4 mg subcutaneously once weekly. If patients do not tolerate a dose escalation, consider delaying dose escalation for 4 weeks. If patients do not tolerate the maintenance 2.4 mg/week dose, may temporarily decrease to 1.7 mg once weekly for a maximum of 4 weeks. After 4 weeks, increase to the maintenance dose of 2.4 mg once weekly. Discontinue semaglutide if the patient cannot tolerate the 2.4 mg dose. PATIENT SELECTION: Indicated for patients with an initial body mass index (BMI) of at least 30 kg/m2 or with a BMI of 27 kg/m2 or more with at least 1 weight-related comorbid condition (i.e., hypertension, type 2 diabetes mellitus, or dyslipidemia). In patients with T2DM, monitor blood glucose prior to and during treatment. LIMIT OF USE: Do not use with other semaglutide products or other GLP-1 receptor agonists. Safety and effectiveness of use in combination with other products intended for weight loss (e.g., prescription or non-prescription drugs or herbal preparations) have not been established.

    MAXIMUM DOSAGE

    Adults

    1 mg/week subcutaneously for the treatment of type 2 diabetes mellitus; 2.4 mg/week subcutaneously for the treatment of obesity; 14 mg/day PO for the treatment of type 2 diabetes mellitus.

    Geriatric

    1 mg/week subcutaneously for the treatment of type 2 diabetes mellitus; 2.4 mg/week subcutaneously for the treatment of obesity; 14 mg/day PO for the treatment of type 2 diabetes mellitus.

    Adolescents

    Safety and efficacy have not been established.

    Children

    Safety and efficacy have not been established.

    Infants

    Not indicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    No dosage adjustments are needed.

    Renal Impairment

    No dosage adjustments are needed.

    ADMINISTRATION

    Oral Administration
    Oral Solid Formulations

    Administer the tablets at least 30 minutes before the first food, beverage, or other oral medications of the day with no more than 4 ounces of plain water. Waiting less than 30 minutes, or taking semaglutide with food, beverages (other than plain water) or other oral medications will reduce efficacy of semaglutide by decreasing its absorption. Waiting more than 30 minutes to eat may increase the absorption of semaglutide.
    The patient should swallow tablets whole. Do not split, crush, or chew tablets.
    Missed dose: If a dose is missed, the missed dose should be skipped, and the next dose should be taken the following day.

    Injectable Administration

    Administer by subcutaneous injection only. Do not administer by intravenous or intramuscular injection.
    Visually inspect for particulate matter and discoloration prior to administration whenever solution and container permit.
    Injection pens should never be shared among patients. Even if the disposable needle is changed, sharing may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens. Do not share pens among multiple patients in an inpatient setting; reserve the use of any pen to 1 patient only.

    Subcutaneous Administration

    Ozempic Pen
    General information
    Ozempic Pen is available as a pre-filled "dial a dose" pen (Ozempic Pen). The pen should be used with NovoFine Plus or Novofine disposable needles up to a length of 8 mm. The pen comes with NovoFine Plus 32-gauge 4 mm disposable needles.
    When used concomitantly with insulin therapy, administer as separate injections. Never mix them together. The 2 injections may be injected in the same body region, but the injections should not be adjacent to each other.
    Adequate oral and written instructions on the use of the pen should be supplied before a patient or caregiver administers a dose. Patients/caregeivers should review the "Instructions for Use" in their pen package.
    Administer every 7 days (once weekly) on the same day each week; the dose can be administered at any time of day, with or without meals.
    Missed dose: If a dose is missed, give as soon as possible within 5 days after the missed dose. If more than 5 days have passed, skip the missed dose and administer on the next scheduled day. The day of weekly administration can be changed if needed, as long as the time between 2 doses is at least 2 days (more than 48 hours).
    Subcutaneous Pen Administration (Ozempic Pen)
    Wash and dry hands before use.
    Each semaglutide pen must be primed prior to the first use. See the pen user manual for priming directions.
    Always attach a new needle right before each injection. Pull the pen cap off, but do not throw it away. Push the needle straight onto the pen. Turn until it is on tight. Pull off the inner needle cap and throw it away.
    Turn the dose selector on the pen until the dose counter shows the dose. Double-check the dosage selected prior to administration.
    Inject subcutaneously into the thigh, abdomen, or upper arm.
    Press down on the center of the dose button to inject until the "0" lines up with the pointer. Inject over 6 seconds to ensure the full dose is injected. The patient may hear or feel a 'click'. Keep thumb on the injection button until the needle is removed from the skin. Remove the needle from the skin.
    Remove and dispose of the used needle in an appropriate sharps container after each injection.
    Place the pen cap back on the pen.
    Rotate administration sites with each injection to prevent lipodystrophy.
    Storage of opened pens: Do not store the "in-use" pen with the needle on; this will reduce the potential for contamination, infection, and leakage and will help ensure dosing accuracy. The open pen can be stored for 56 days below 86 degrees F (30 degrees C) or in a refrigerator at 36 to 46 degrees F (2 to 8 degrees C). Do not freeze. Throw away the pen after 56 days, even if it still has medication left in it.
     
    Wegovy Pen
    General information
    Wegovy Pen is available in 5 pre-filled, disposable, single-dose pens (0.25, 0.5, 1, 1.7, and 2.4 mg). Ensure the correct dose of the pen is chosen for the dose to be administered.
    Administer once every 7 days (once weekly) on the same day each week; the dose can be administered at any time of day, with or without meals.
    Missed dose: If 1 dose is missed and the next scheduled dose is more than 2 days away (48 hours), administer dose as soon as possible. If 1 dose is missed and the next scheduled dose is less than 2 days away (48 hours), do not administer the dose. Resume dosing on the regularly scheduled day of the week. If more than 2 consecutive doses are missed, resume dosing as scheduled. Alternatively, if needed, restart the initial titration schedule, which may reduce the occurrence of gastrointestinal symptoms associated with reinitiating treatment.
    Subcutaneous Pen Administration (Wegovy Pen)
    Instruct patients on proper injection technique; people who are blind or have vision problems should not use the pen without help from a person trained to use the pen. Patients should review the "Instructions for Use" in their pen package.
    Wash and dry hands before use.
    The dose of semaglutide is already set on the Wegovy pen; each pen is for one-time use only.
    The needle is covered by the needle cover and will not be seen. Do not remove the pen cap until ready to inject; do not touch or push the needle cover to avoid a needle stick injury.
    Inject subcutaneously into the thigh, abdomen, or upper arm by pressing the needle cap against the skin; this will begin the injection. do not inject into an area where the skin is tender, bruised, red, or hard. Avoid injecting into areas with scars or stretch marks.
    Do not remove the pen from the skin before the yellow bar in the pen window has stopped moving. If the needle is removed earlier, the full dose may not be received. The needle cover will lock when it is removed from the skin. The injection cannot be stopped and restarted later.
    If the yellow bar does not start moving or stops moving during the injection, advise the patient to contact their health care provider or Novo Nordisk at startWegovy.com or call Novo Nordisk Inc. at 1-833-934-6891.
    Dispose of the used pen in an appropriate sharps container after each injection. Each Wegovy pen is for single-use only.
    Rotate administration sites with each injection to prevent lipodystrophy.

    STORAGE

    OZEMPIC:
    - Avoid direct heat and sunlight
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Refrigerate (between 36 and 46 degrees F)
    - See package insert for detailed storage information
    - Store opened (in use) product at room temperature (below 86 degrees F) for up to 56 days (8 weeks)
    Rybelsus:
    - Do not freeze
    - Protect from moisture
    - Store and dispense in original container
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    - Store in a dry place
    Wegovy:
    - Discard if product has been frozen
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Discard unused portion. Do not store for later use.
    - Do not freeze
    - Protect from light
    - Refrigerate (between 36 and 46 degrees F)
    - See package insert for detailed storage information
    - Store in original package until time of use
    - Unrefrigerated product can be kept from 8 degrees C to 30 degrees C (46 to 86 degrees F) up to 28 days

    CONTRAINDICATIONS / PRECAUTIONS

    History of angioedema, serious hypersensitivity reactions or anaphylaxis

    Semaglutide is contraindicated in patients with a history of angioedema or other serious hypersensitivity reaction to semaglutide. There is a risk of serious hypersensitivity reactions or anaphylaxis with semaglutide use. Serious hypersensitivity reactions have been reported during postmarketing use with other GLP-1 receptor agonists, such as anaphylaxis or angioedema. Use caution in patients with a history of angioedema or anaphylaxis to other GLP-1 receptor agonists because it is unknown whether such patients will be predisposed to serious reactions with semaglutide. If a serious hypersensitivity reaction is suspected, discontinue semaglutide and consider other potential causes for the event, then initiate alternative therapy.

    Medullary thyroid carcinoma (MTC), multiple endocrine neoplasia syndrome type 2 (MEN 2), thyroid cancer, thyroid C-cell tumors

    Semaglutide is contraindicated in patients with a personal or family history of certain types of thyroid cancer, specifically thyroid C-cell tumors such as medullary thyroid carcinoma (MTC), or in patients with multiple endocrine neoplasia syndrome type 2 (MEN 2). Semaglutide has been shown to cause dose-dependent and treatment duration-dependent malignant thyroid C-cell tumors at clinically relevant exposures in both genders of rats and mice. A statistically significant increase in cancer was observed in rats receiving semaglutide at all dose levels (greater than 2X human exposure). It is unknown whether semaglutide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans. Cases of MTC in patients treated with liraglutide, another GLP-1 receptor agonist, have been reported in the postmarketing period; the data in these reports are insufficient to establish or exclude a causal relationship between MTC and GLP-1 receptor agonist use in humans. In clinical trials, there were 7 reported cases of papillary thyroid carcinoma in patients treated with liraglutide and 1 case in a comparator-treated patient (1.5 vs. 0.5 cases per 1,000 patient-years). Most of these papillary thyroid carcinomas were less than 1 cm in greatest diameter and were diagnosed after thyroidectomy, which was prompted by finding on protocol-specified screening with serum calcitonin or thyroid ultrasound. Patients should be counseled on the potential risk and symptoms of thyroid tumors (e.g. a mass in the neck, dysphagia, dyspnea or persistent hoarseness). Although routine monitoring of serum calcitonin is of uncertain value in patients treated with semaglutide, if serum calcitonin is measured and found to be elevated, the patient should be referred to an endocrinologist for further evaluation.

    Diabetic ketoacidosis, type 1 diabetes mellitus

    Semaglutide is not a substitute for insulin in patients who require insulin. Semaglutide should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

    Burns, diarrhea, fever, infection, surgery, thyroid disease, trauma, vomiting

    Diabetic patients must follow a regular, prescribed diet and exercise schedule to avoid either hypo- or hyperglycemia. Fever, thyroid disease, infection, recent trauma or surgery, diarrhea secondary to malabsorption, vomiting, and certain medications can affect requirements of antidiabetic agents; dosage adjustments may be necessary. Diabetic patients should be given a 'sick-day' plan to take appropriate action with blood glucose monitoring and their antidiabetic therapy, including semaglutide, when acute illness is present. Temporary use of insulin in place of oral antidiabetic agents may be necessary during periods of physiologic stress (e.g., burns, systemic infection, trauma, surgery, or fever).

    Hypoglycemia

    Hypoglycemia should be monitored for by the patient and clinician when semaglutide treatment is initiated and continued for type 2 diabetes mellitus (DM) and for weight reduction and maintenance. In a clinical trial of semaglutide injection for weight loss (Wegovy) in patients with type 2 DM and a BMI of 27 kg/m2 or more, hypoglycemia (defined as a plasma glucose less than 54 mg/dL) was reported in 6.2% of semaglutide-treated patients versus 2.5% of placebo-treated patients. One episode of severe hypoglycemia (requiring the assistance of another person) was reported in one semaglutide-treated patient versus no placebo-treated patients. In clinical trials of semaglutide injection for type 2 DM (Ozempic), hypoglycemia was increased when semaglutide was used in combination with a sulfonylurea; patients receiving semaglutide in combination with an insulin secretagogue (e.g., sulfonylurea) or insulin may have an increased risk of hypoglycemia, including severe hypoglycemia. Although specific dose recommendations are not available, the clinician should consider a dose reduction of the sulfonylurea or insulin when used in combination with semaglutide.   In addition, when semaglutide is used in combination with insulin detemir, the dose of insulin should be evaluated; in patients at increased risk of hypoglycemia consider reducing the dose of insulin at initiation of semaglutide, followed by careful titration. Adequate blood glucose monitoring should be continued and followed. Patient and family education regarding hypoglycemia management is crucial; the patient and patient's family should be instructed on how to recognize and manage the symptoms of hypoglycemia. Early warning signs of hypoglycemia may be less obvious in patients with hypoglycemia unawareness which can be due to a long history of diabetes (where deficiencies in the release or response to counter regulatory hormones exist), with autonomic neuropathy, intensified diabetes control, or taking beta-blockers, guanethidine, or reserpine. Patients should be aware of the need to have a readily available source of glucose (dextrose, d-glucose) or other carbohydrate to treat hypoglycemic episodes. In severe hypoglycemia, intravenous dextrose or glucagon injections may be needed. Because hypoglycemic events may be difficult to recognize in some elderly patients, antidiabetic agent regimens should be carefully managed to obviate an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia in a patient is an indication for the modification of treatment regimens, including setting higher glycemic goals. Semaglutide may have particular benefits when used in patients with type 2 DM who are overweight or obese. According to the American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, weight loss medications should be considered as an adjunct to lifestyle therapy in all patients with type 2 DM as needed for weight loss sufficient to improve glycemic control, lipids, and blood pressure.

    Pancreatitis

    Acute pancreatitis, including fatal and non-fatal hemorrhagic or necrotizing pancreatitis, has been observed in patients treated with GLP-1 receptor agonists, including semaglutide in clinical trials. Semaglutide has not been studied in patients with a history of pancreatitis to determine whether these patients are at increased risk for pancreatitis. After initiation and dose increases, patients should be observed carefully for signs and symptoms of pancreatitis (including persistent severe abdominal pain, sometimes radiating to the back and which may or may not be accompanied by vomiting). If pancreatitis is suspected, discontinue semaglutide; if pancreatitis is confirmed, do not resume semaglutide. The FDA and the EMA have stated that after review of published and unpublished reports, the current data do not support an increased risk of pancreatitis and pancreatic cancer in patients receiving incretin mimetics. The agencies have not reached any new conclusions about safety risks of the incretin mimetics, although they have expressed that the totality of the data that have been reviewed provides reassurance. Continue to consider precautions related to pancreatic risk until more data are available. According to the American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, obese patients receiving incretin-based therapies for weight loss should be monitored for the development of pancreatitis. Incretin-based therapies should be avoided in patients with prior or current pancreatitis; otherwise, there are insufficient data to recommend withholding them for weight loss due to concerns of pancreatitis.

    Cholelithiasis, gallbladder disease

    Use caution when semaglutide is used for weight management in patients with known gallbladder disease or a history of cholelithiasis (gallstones). In clinical trials, cholelithiasis was reported in 1.6% of semaglutide-treated patients compared with 0.6% of placebo-treated patients. Cholecystitis was reported in 0.6% and 0.2% of patients, respectively. Substantial or rapid weight loss can increase the risk of cholelithiasis; however, the incidence of acute gallbladder disease was greater in semaglutide-treated patients than in placebo-treated patients, even after accounting for the degree of weight loss. In patients for whom cholelithiasis is suspected, perform gallbladder studies and appropriate clinical follow-up. According to the American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, close monitoring for cholelithiasis is recommended in patients undergoing weight loss therapy, regardless of modality. In high-risk patients, semaglutide should be used with caution. Effective preventative measures for obese patients at risk for cholelithiasis include a slower rate of weight loss, increasing/including some dietary fat in the diet (assuming the patient has been on a very low-calorie diet containing little or no fat), or administration of ursodeoxycholic acid.

    Diabetic retinopathy

    Monitor for visual changes in patients with a history of diabetic retinopathy. Inform patients to contact their prescriber if changes in vision are experienced during treatment. There is an increased risk for diabetic retinopathy complications in patients with a history of diabetic retinopathy at baseline compared to patients without a known history of diabetic retinopathy. In a 2-year trial involving patients with type 2 diabetes and high cardiovascular risk, more events of diabetic retinopathy complications occurred in patients treated with semaglutide 0.5 and 1 mg once weekly injections (3%) compared to placebo (1.8%). The absolute risk increase for diabetic retinopathy complications was larger among patients with a history of diabetic retinopathy at baseline (semaglutide injection 8.2%, placebo 5.2%) than among patients without a known history of diabetic retinopathy (semaglutide injection 0.7%, placebo 0.4%). In a pooled analysis of glycemic control trials with oral semaglutide, diabetic retinopathy complications occurred in 4.2% of patients receiving semaglutide and 3.8% with comparator. In a trial of semaglutide injection (Wegovy) in patients with type 2 diabetes and BMI of 27 kg/m2 or more, diabetic retinopathy was reported by 4% of semaglutide-treated patients vs. 2.7% of placebo-treated patients. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy. The effect of long-term glycemic control with semaglutide on diabetic retinopathy complications has not been studied.

    Renal impairment

    Use caution when initiating or increasing doses of semaglutide in patients with renal impairment; however, no dose adjustments are needed based on renal function. There have been postmarketing reports of renal impairment, acute kidney injury, and worsening of chronic renal failure, which sometimes has required hemodialysis, in patients treated with GLP-1 receptor agonists. Some of these events have been reported in patients without known underlying renal disease. In many of these cases, altered renal function has been reversed with supportive treatment and discontinuation of potentially causative agents. A majority of the reported events occurred in patients who had experienced nausea, vomiting, diarrhea, or dehydration. Monitor renal function when initiating or escalating doses of semaglutide in patients reporting severe adverse gastrointestinal reactions.

    Depression, schizophrenia, suicidal ideation

    Suicidal behavior and ideation have been reported in clinical trials with other incretin mimetics indicated for weight management. Therefore, when semaglutide is used for weight management, administer with caution in patients with depression and avoid use in patients with a history of suicide attempts or active suicidal ideation; monitor patients for the emergence or worsening of depression, suicidal thoughts or behavior, and any unusual changes in mood or behavior. Discontinue semaglutide in patients who develop suicidal thoughts or behaviors. According to the American Association of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, all patients undergoing weight loss therapy should be monitored for mood disorders, depression, and suicidal ideation. Evidence assessing safety and efficacy of weight loss medications in patients with a psychotic disorder (e.g., schizophrenia) is insufficient, and the AACE/ACE Obesity Guidelines recommend caution. Patients receiving an antipsychotic should be treated with structured lifestyle modifications to promote weight loss and weight gain prevention; the AACE/ACE Obesity Guidelines suggest that metformin may be beneficial for modest weight loss and metabolic improvements in patients receiving an antipsychotic.

    Pregnancy

    Semaglutide (Wegovy) for the treatment of obesity or weight management should not be used during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in fetal harm due to the potential hazard of maternal weight loss to the fetus. There is a pregnancy exposure registry for women who use semaglutide intended for weight management (Wegovy) during pregnancy. Contact Novo Nordisk at 1-800-727-6500 for more information. According to the American Association of Clinical Endocrinologists the and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, weight loss medications must not be used during pregnancy. The AACE/ACE Obesity Guidelines recommend contraception requirements for women of childbearing potential; those receiving semaglutide for weight reduction should use adequate contraception and discontinue semaglutide if pregnancy occurs. There are no adequate data or clinical studies of semaglutide use for the treatment of type 2 diabetes mellitus in pregnant women to inform a drug-associated risk for adverse developmental outcomes; use in pregnancy only if the potential benefit justifies the potential risk to the fetus. Rat studies have noted embryofetal mortality, structural abnormalities, and alterations to growth at maternal exposures below the maximum recommended human dose (MRHD) based on exposure AUC. In rabbits and cynomolgus monkeys administered semaglutide during organogenesis, early pregnancy losses and structural abnormalities were observed at below the MRHD (rabbit) and 5-fold or greater the MRHD (monkey). Poorly controlled diabetes during pregnancy also increases fetal risk.[62656] [64637] In addition, salcaprozate sodium (SNAC), an absorption enhancer in oral semaglutide tablets, crosses the placenta, and reaches fetal tissues in rats. In a pre- and postnatal development study of SNAC exposure, an increase in gestation length, an increase in the number of stillbirths, and a decrease in pup viability were observed.[64637] The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in pregnant women with diabetes mellitus and gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.[64926] [62358] [62656] [64637]

    Reproductive risk

    Semaglutide may be associated with reproductive risk and preconceptual planning is recommended; females of childbearing potential should discontinue semaglutide at least 2 months before a planned pregnancy due to the drug's long washout period.

    Breast-feeding

    Use injectable semaglutide with caution during lactation; oral semaglutide therapy is not recommended during breast-feeding. There are no data on the presence of semaglutide in human milk, the effects on the breast-fed infant, or the effects on milk production. Semaglutide was present in the milk of lactating rats and was detected at levels 3- to 12- fold lower than in maternal rat plasma.  Salcaprozate sodium (SNAC) (an absorption enhancer in oral semaglutide tablets) and/or its metabolites concentrated in the milk of lactating rats. There are no data on the presence of SNAC in human milk. Since the activity of UGT2B7, an enzyme involved in SNAC clearance, is lower in infants compared to adults, higher SNAC plasma levels may occur in neonates and infants. Because of the unknown potential for serious adverse reactions in the breastfed infant due to the possible accumulation of SNAC from breast-feeding and because semaglutide injection can be considered for use during lactation, advise patients that breast-feeding is not recommended during treatment with oral semaglutide tablets. If semaglutide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide is usually considered compatible with breast-feeding. Glyburide may also be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.

    Geriatric

    Semaglutide has been studied in patients 65 years of age or older during clinical trials; safety and efficacy were not different in geriatric patients versus younger adult patients. In general, however, elderly patients are especially at risk for hypoglycemic episodes.   The specific reasons identified include intensive insulin therapy, decreased renal function, severe liver disease, alcohol ingestion, defective counter regulatory hormone release, missing meals/fasting, and gastroparesis. Because hypoglycemic events may be difficult to recognize in some elderly patients, antidiabetic agent regimens should be carefully managed to obviate an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia is an indication for the modification of treatment regimens, including setting higher glycemic goals. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, the use of antidiabetic medications should include monitoring (e.g., periodic blood glucose) for effectiveness based on desired goals for that individual and to identify complications of treatment such as hypoglycemia or impaired renal function.

    Children, infants, neonates

    The safety and effectiveness of semaglutide have not been established in children and adolescents less than 18 years of age. Semaglutide is not indicated in the treatment of infants or neonates.

    ADVERSE REACTIONS

    Severe

    retinopathy / Delayed / 0.7-4.2
    cholecystitis / Delayed / 0.6-0.6
    appendicitis / Delayed / 0.5-0.5
    pancreatitis / Delayed / 0.1-0.3
    renal failure / Delayed / Incidence not known
    angioedema / Rapid / Incidence not known
    new primary malignancy / Delayed / Incidence not known

    Moderate

    constipation / Delayed / 3.1-24.0
    hypoglycemia / Early / 1.0-11.0
    gastritis / Delayed / 0.4-4.0
    antibody formation / Delayed / 0.5-2.9
    cholelithiasis / Delayed / 0.4-1.6
    hypotension / Rapid / 1.3-1.3
    dehydration / Delayed / Incidence not known
    hyperamylasemia / Delayed / Incidence not known
    sinus tachycardia / Rapid / Incidence not known
    orthostatic hypotension / Delayed / Incidence not known

    Mild

    nausea / Early / 11.0-44.0
    diarrhea / Early / 8.5-30.0
    vomiting / Early / 5.0-24.0
    abdominal pain / Early / 5.7-20.0
    headache / Early / 14.0-14.0
    fatigue / Early / 0.4-11.0
    dyspepsia / Early / 0.6-9.0
    dizziness / Early / 0.4-8.0
    eructation / Early / 0.6-7.0
    flatulence / Early / 0.4-6.0
    gastroesophageal reflux / Delayed / 1.5-5.0
    alopecia / Delayed / 3.0-3.0
    injection site reaction / Rapid / 0.2-1.4
    syncope / Early / 0.8-0.8
    dysgeusia / Early / 0.4
    urticaria / Rapid / Incidence not known
    rash / Early / Incidence not known

    DRUG INTERACTIONS

    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Aliskiren; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Amlodipine; Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Amlodipine; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Amprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Angiotensin II receptor antagonists: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Aspirin, ASA: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Carisoprodol: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Dipyridamole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Omeprazole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Oxycodone: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Pravastatin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atazanavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    atypical antipsychotic: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Azilsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Azilsartan; Chlorthalidone: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bismuth Subsalicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
    Candesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Captopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Carbamazepine: (Moderate) Consider increased clinical or laboratory monitoring for carbamazepine if administered with oral semaglutide as the oral absorption of carbamazepine may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index. Be sure to administer oral semaglutide as directed, separately from other oral medications. This interaction does not occur with subcutaneous semaglutide.
    Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
    Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Codeine; Phenylephrine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Conjugated Estrogens; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Corticosteroids: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cyclosporine: (Moderate) Consider increased clinical or laboratory monitoring for oral cyclosporine administered with oral semaglutide as the absorption of cyclosporine may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV cyclosporine. Patients should also be monitored for worsening of glycemic control when any form of systemic cyclosporine is initiated in patients receiving antidiabetic agents, including semaglutide. Cyclosporine has been reported to cause hyperglycemia. Cyclosporine may have direct beta-cell toxicity and the effects may be dose-related.
    Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
    Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Darunavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir : (Moderate) Closely monitor blood glucose levels if dasabuvir; ombitasvir; paritaprevir; ritonavir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as dasabuvir; ombitasvir; paritaprevir; ritonavir.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Desogestrel; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
    Dienogest; Estradiol valerate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Digoxin: (Moderate) Consider increased clinical or laboratory monitoring for digoxin if administered with oral semaglutide as the oal absorption of digoxin may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Be sure to administer oral semaglutide as directed, separately from other oral medications. This interaction does not occur with subcutaneous semaglutide or IV digoxin.
    Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving this combination should be monitored for changes in glycemic control.
    Drospirenone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Estetrol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Elagolix; Estradiol; Norethindrone acetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Elbasvir; Grazoprevir: (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
    Enalapril, Enalaprilat: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Felodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Eprosartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Estradiol Cypionate; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Norgestimate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Progesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estrogens: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as combined hormonal oral contraceptives (OCs). Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. atients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethanol: (Moderate) Patients should be advised to limit alcohol ingestion when treated with an antidiabetic agent. Alcohol inhibits gluconeogenesis, which can contribute to or increase the risk for hypoglycemia. In some patients, hypoglycemia can be prolonged. If a patient with diabetes ingests alcohol, they should be counselled to avoid ingestion of alcohol on an empty stomach, which increases risk for low blood sugar. Patients should also be aware of the carbohydrate intake provided by certain types of alcohol in the diet, which can contribute to poor glycemic control. If a patient chooses to ingest alcohol, they should monitor their blood glucose frequently. Many non-prescription drug products may be formulated with alcohol; instruct patients to scrutinize product labels prior to consumption.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norelgestromin: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethotoin: (Minor) Ethotoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Etonogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Etonogestrel; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Fibric acid derivatives: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
    Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
    Fluoxymesterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Fosinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Fosphenytoin: (Minor) Fosphenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
    Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
    Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking incretin mimetics should be monitored closely for hypoglycemia if consuming green tea.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Hydroxychloroquine: (Moderate) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
    Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like incretin mimetics. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
    Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Irbesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Isocarboxazid: (Moderate) Serum glucose should be monitored closely when monoamine oxidase inhibitors (MAOIs) are added to any regimen containing antidiabetic agents. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and other antidiabetic agents.
    Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
    Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Leuprolide; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levonorgestrel; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levothyroxine: (Moderate) Consider increased clinical or laboratory monitoring for thyroid hormones if administered with oral semaglutide as the oral absorption of thyroid hormones may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Levothyroxine exposure was increased by 33% when administered with semaglutide in a drug interaction study. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV levothyroxine. In addition, close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
    Levothyroxine; Liothyronine (Porcine): (Moderate) Consider increased clinical or laboratory monitoring for thyroid hormones if administered with oral semaglutide as the oral absorption of thyroid hormones may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Levothyroxine exposure was increased by 33% when administered with semaglutide in a drug interaction study. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV levothyroxine. In addition, close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
    Levothyroxine; Liothyronine (Synthetic): (Moderate) Consider increased clinical or laboratory monitoring for thyroid hormones if administered with oral semaglutide as the oral absorption of thyroid hormones may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Levothyroxine exposure was increased by 33% when administered with semaglutide in a drug interaction study. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV levothyroxine. In addition, close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
    Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
    Liothyronine: (Moderate) Consider increased clinical or laboratory monitoring for thyroid hormones if administered with oral semaglutide as the oral absorption of thyroid hormones may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Levothyroxine exposure was increased by 33% when administered with semaglutide in a drug interaction study. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV levothyroxine. In addition, close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
    Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic therapy iincluding incretin mimetics. Blood glucose concentrations should be closely monitored if lithium is taken by the patient. Dosage adjustments of insulin may be necessary.
    Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Loop diuretics: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
    Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
    Losartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Lovastatin; Niacin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Mecasermin rinfabate: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Meperidine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Mesoridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Mestranol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
    Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Monoamine oxidase inhibitors: (Moderate) Serum glucose should be monitored closely when monoamine oxidase inhibitors (MAOIs) are added to any regimen containing antidiabetic agents. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and other antidiabetic agents.
    Nandrolone Decanoate: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Nebivolol; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
    Nirmatrelvir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norethindrone; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norgestimate; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
    Olanzapine; Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
    Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
    Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
    Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
    Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
    Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
    Perindopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perindopril; Amlodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phenelzine: (Moderate) Serum glucose should be monitored closely when monoamine oxidase inhibitors (MAOIs) are added to any regimen containing antidiabetic agents. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and other antidiabetic agents.
    Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phenytoin: (Moderate) Consider increased clinical or laboratory monitoring for oral phenytoin administered with oral semaglutide as the absorption of phenytoin may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV phenytoin. Patients should also be monitored for worsening of glycemic control when any form of systemic phenytoin is initiated in patients receiving antidiabetic agents, including semaglutide. Phenytoin has been reported to cause hyperglycemia.
    Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Progesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Progestins: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Promethazine; Dextromethorphan: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Promethazine; Phenylephrine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Quinolones: (Moderate) Monitor blood glucose carefully when systemic quinolones and antidiabetic agents, including incretin mimetics, are coadministered. Discontinue the quinolone if a hypoglycemic reaction occurs and initiate appropriate therapy immediately. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Hypoglycemia, sometimes resulting in coma, can occur.
    Ramipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Relugolix; Estradiol; Norethindrone acetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Reserpine: (Moderate) Reserpine may mask the signs and symptoms of hypoglycemia. Patients receiving reserpine concomitantly with antidiabetic agents, such as incretin mimetics, should be monitored for changes in glycemic control.
    Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Sacubitril; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Salsalate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Segesterone Acetate; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
    Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
    Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
    Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
    Sympathomimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Tacrolimus: (Moderate) Consider increased clinical or laboratory monitoring for oral tacrolimus administered with oral semaglutide as the absorption of tacrolimus may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV tacrolimus. Patients should also be monitored for worsening of glycemic control when any form of systemic tacrolimus is initiated in patients receiving antidiabetic agents, including semaglutide. Tacrolimus has been reported to cause hyperglycemia. The mechanism of hyperglycemia is thought to be through direct beta-cell toxicity.
    Tegaserod: (Moderate) Tegaserod can enhance gastric emptying in patients with diabetes. Typically, blood glucose could be affected, which, in turn, may affect the clinical response to antidiabetic agents. However, incretin mimetics have been shown to slow gastric emptying. The clinical effects of these competing mechanisms is not known. The dosing of antidiabetic agents may require adjustment and blood glucose should be closely monitored when coadministered with tegaserod.
    Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Telmisartan; Amlodipine: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Theophylline, Aminophylline: (Moderate) Consider increased clinical or laboratory monitoring for aminophylline if administered with oral semaglutide as the absorption of aminophylline may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index, such as aminophylline, a prodrug for theophylline. Administer oral semaglutide separately from other oral medications. Monitor theophylline levels as clinically indicated. This interaction does not occur with subcutaneous semaglutide or with IV aminophylline. (Moderate) Consider increased clinical or laboratory monitoring for theophylline if administered with oral semaglutide as the absorption of theophylline may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index, such as theophylline. Administer oral semaglutide separately from other oral medications. Monitor theophylline levels as clinically indicated. This interaction does not occur with subcutaneous semaglutide or with IV theophylline.
    Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Thiethylperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thyroid hormones: (Moderate) Consider increased clinical or laboratory monitoring for thyroid hormones if administered with oral semaglutide as the oral absorption of thyroid hormones may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications. Levothyroxine exposure was increased by 33% when administered with semaglutide in a drug interaction study. Be sure to administer oral semaglutide as directed, separately from other oral medications. This absorption interaction does not occur with subcutaneous semaglutide or IV levothyroxine. In addition, close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
    Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Tobacco: (Minor) Tobacco smoking is known to aggravate insulin resistance. The cessation of tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
    Trandolapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Trandolapril; Verapamil: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Tranylcypromine: (Moderate) Serum glucose should be monitored closely when monoamine oxidase inhibitors (MAOIs) are added to any regimen containing antidiabetic agents. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and other antidiabetic agents.
    Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
    Triamterene; Hydrochlorothiazide, HCTZ: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
    Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Warfarin: (Moderate) Consider increased clinical or laboratory monitoring for warfarin if administered with oral semaglutide as the oral absorption of warfarin may be altered. Semaglutide delays gastric emptying and therefore has the potential to affect absorption of other orally administered medications, particularly those with a narrow therapeutic index. Administer oral semaglutide separately from other oral medications. This interaction does not occur with subcutaneous semaglutide or IV warfarin.

    PREGNANCY AND LACTATION

    Pregnancy

    Semaglutide (Wegovy) for the treatment of obesity or weight management should not be used during pregnancy because weight loss offers no potential benefit to a pregnant woman and may result in fetal harm due to the potential hazard of maternal weight loss to the fetus. There is a pregnancy exposure registry for women who use semaglutide intended for weight management (Wegovy) during pregnancy. Contact Novo Nordisk at 1-800-727-6500 for more information. According to the American Association of Clinical Endocrinologists the and American College of Endocrinology (AACE/ACE) Obesity Clinical Practice Guidelines, weight loss medications must not be used during pregnancy. The AACE/ACE Obesity Guidelines recommend contraception requirements for women of childbearing potential; those receiving semaglutide for weight reduction should use adequate contraception and discontinue semaglutide if pregnancy occurs. There are no adequate data or clinical studies of semaglutide use for the treatment of type 2 diabetes mellitus in pregnant women to inform a drug-associated risk for adverse developmental outcomes; use in pregnancy only if the potential benefit justifies the potential risk to the fetus. Rat studies have noted embryofetal mortality, structural abnormalities, and alterations to growth at maternal exposures below the maximum recommended human dose (MRHD) based on exposure AUC. In rabbits and cynomolgus monkeys administered semaglutide during organogenesis, early pregnancy losses and structural abnormalities were observed at below the MRHD (rabbit) and 5-fold or greater the MRHD (monkey). Poorly controlled diabetes during pregnancy also increases fetal risk.[62656] [64637] In addition, salcaprozate sodium (SNAC), an absorption enhancer in oral semaglutide tablets, crosses the placenta, and reaches fetal tissues in rats. In a pre- and postnatal development study of SNAC exposure, an increase in gestation length, an increase in the number of stillbirths, and a decrease in pup viability were observed.[64637] The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in pregnant women with diabetes mellitus and gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.[64926] [62358] [62656] [64637]

    Use injectable semaglutide with caution during lactation; oral semaglutide therapy is not recommended during breast-feeding. There are no data on the presence of semaglutide in human milk, the effects on the breast-fed infant, or the effects on milk production. Semaglutide was present in the milk of lactating rats and was detected at levels 3- to 12- fold lower than in maternal rat plasma.  Salcaprozate sodium (SNAC) (an absorption enhancer in oral semaglutide tablets) and/or its metabolites concentrated in the milk of lactating rats. There are no data on the presence of SNAC in human milk. Since the activity of UGT2B7, an enzyme involved in SNAC clearance, is lower in infants compared to adults, higher SNAC plasma levels may occur in neonates and infants. Because of the unknown potential for serious adverse reactions in the breastfed infant due to the possible accumulation of SNAC from breast-feeding and because semaglutide injection can be considered for use during lactation, advise patients that breast-feeding is not recommended during treatment with oral semaglutide tablets. If semaglutide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide is usually considered compatible with breast-feeding. Glyburide may also be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.

    MECHANISM OF ACTION

    Semaglutide an incretin mimetic; specifically, semaglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist with 94% sequence homology to human GLP-1. Semaglutide binds and activates the GLP-1 receptor. GLP-1 is an important, gut-derived, glucose homeostasis regulator that is released after the oral ingestion of carbohydrates or fats. In patients with Type 2 diabetes, GLP-1 concentrations are decreased in response to an oral glucose load. GLP-1 enhances insulin secretion; it increases glucose-dependent insulin synthesis and in vivo secretion of insulin from pancreatic beta cells in the presence of elevated glucose. In addition to increases in insulin secretion and synthesis, GLP-1 suppresses glucagon secretion, slows gastric emptying, reduces food intake, and promotes beta-cell proliferation. The principal mechanism of protraction resulting in the long half-life of semaglutide is albumin binding, which results in decreased renal clearance and protection from metabolic degradation; semaglutide is stabilized against degradation by the DPP-4 enzyme. Semaglutide reduces blood glucose through a mechanism where it stimulates insulin secretion and lowers glucagon secretion, both in a glucose-dependent manner. Therefore, when blood glucose is high, insulin secretion is stimulated and glucagon secretion is inhibited. The mechanism of blood glucose lowering also involves a minor delay in gastric emptying in the early postprandial phase.

    PHARMACOKINETICS

    Semaglutide is given via subcutaneous or oral administration. The mean estimated volume of distribution is 12.5 L and 8 L following subcutaneous and oral administration; respectively. Semaglutide is more than 99% bound to plasma albumin. The primary route of elimination is metabolism following proteolytic cleavage of the peptide backbone and sequential beta-oxidation of the fatty acid side-chain. The primary excretion routes of semaglutide-related material is via the urine and feces. Approximately 3% of the dose is excreted in the urine as intact semaglutide. The clearance is approximately 0.05 L/hour and 0.04 L/hour following subcutaneous and oral administration; respectively. With an elimination half-life of approximately 1 week, semaglutide will be present in the circulation for about 5 weeks after the last dose and up to 7 weeks after the last dose for the treatment of obesity.
     
    Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: None

    Oral Route

    Semaglutide is co-formulated with salcaprozate sodium which facilitates the absorption of semaglutide after oral administration. The absorption of semaglutide primarily occurs in the stomach. Population pharmacokinetics (PK) estimated semaglutide exposure to increase in a dose-proportional manner. The mean population-PK estimated steady-state concentrations following once daily oral administration of 7 and 14 mg were approximately 6.7 nmol/L and 14.6 nmol/L, respectively. Following oral administration, maximum concentration of semaglutide is reached 1 hour post-dose. Steady-state exposure is achieved following 4 to 5 weeks administration. Population-PK estimated absolute bioavailability of semaglutide is approximately 0.4% to 1%, following oral administration.
     
    Oral semaglutide tablets are formulated with salcaprozate sodium (SNAC), an absorption enhancer. UGT2B7 is an enzyme involved in SNAC clearance. SNAC crosses the placenta and reaches fetal tissues in rats and SNAC and/or its metabolites concentrated in the milk of lactating rats.

    Subcutaneous Route

    Following subcutaneous administration, maximum concentrations of semaglutide were attained at 1 to 3 days post-dosing. Similar exposure is achieved with subcutaneous administration of semaglutide in the abdomen, thigh, or upper arm. The absolute bioavailability of subcutaneous semaglutide is 89%.
    Ozempic: The mean population estimated steady-state concentrations following once weekly subcutaneous administration of 0.5 mg and 1 mg semaglutide were approximately 65 ng/mL and 123 ng/mL, respectively. Steady-state exposures are achieved following 4 to 5 weeks of once-weekly administration. Exposures at the 0.5 mg and 1 mg dose levels were consistent with a dose-proportional increase.
    Wegovy: The average semaglutide steady-state concentration following subcutaneous administration of semaglutide was approximately 75 nmol/L in patients with either obesity (BMI greater than or equal to 30 kg/m2) or overweight (BMI 27 kg/m2 or more). The steady-state exposure of semaglutide increased proportionally with doses up to 2.4 mg subcutaneously once weekly.