DRUG INTERACTIONS
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Acetaminophen; Aspirin: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Alendronate; Cholecalciferol: (Major) High intake of phosphates concomitantly with vitamin D or vitamin D analogs may lead to hyperphosphatemia. Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with phosphorus salts. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia.
Aluminum Hydroxide: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) The oral absorption of phosphorus is reduced by ingestion of aluminum-containing antacids (e.g., aluminum hydroxide). If the patient requires treatment with aluminum-containing antacids, it may be wise to separate the administration of phosphorus salts from the antacid. In some instances the administration of an aluminum hydroxide product is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of these drugs in these settings, assuming hypophosphatemia is not present.
Aluminum Hydroxide; Magnesium Carbonate: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products. (Moderate) The oral absorption of phosphorus is reduced by ingestion of aluminum-containing antacids (e.g., aluminum hydroxide). If the patient requires treatment with aluminum-containing antacids, it may be wise to separate the administration of phosphorus salts from the antacid. In some instances the administration of an aluminum hydroxide product is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of these drugs in these settings, assuming hypophosphatemia is not present.
Aluminum Hydroxide; Magnesium Hydroxide: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products. (Moderate) The oral absorption of phosphorus is reduced by ingestion of aluminum-containing antacids (e.g., aluminum hydroxide). If the patient requires treatment with aluminum-containing antacids, it may be wise to separate the administration of phosphorus salts from the antacid. In some instances the administration of an aluminum hydroxide product is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of these drugs in these settings, assuming hypophosphatemia is not present.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products. (Moderate) The oral absorption of phosphorus is reduced by ingestion of aluminum-containing antacids (e.g., aluminum hydroxide). If the patient requires treatment with aluminum-containing antacids, it may be wise to separate the administration of phosphorus salts from the antacid. In some instances the administration of an aluminum hydroxide product is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of these drugs in these settings, assuming hypophosphatemia is not present.
Aluminum Hydroxide; Magnesium Trisilicate: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) The oral absorption of phosphorus is reduced by ingestion of aluminum-containing antacids (e.g., aluminum hydroxide). If the patient requires treatment with aluminum-containing antacids, it may be wise to separate the administration of phosphorus salts from the antacid. In some instances the administration of an aluminum hydroxide product is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of these drugs in these settings, assuming hypophosphatemia is not present.
Amiloride: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Amiloride; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Amlodipine; Benazepril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Amlodipine; Olmesartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Amlodipine; Valsartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Angiotensin II receptor antagonists: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Angiotensin-converting enzyme inhibitors: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Antacids: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers.
Aspirin, ASA: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Caffeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Carisoprodol: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Dipyridamole: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Omeprazole: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Oxycodone: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Aspirin, ASA; Pravastatin: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Azelastine; Fluticasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Azilsartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Azilsartan; Chlorthalidone: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Beclomethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Benazepril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Benazepril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Betamethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Bismuth Subsalicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Budesonide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Budesonide; Formoterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Burosumab: (Contraindicated) Oral phosphates are contraindicated in patients receiving burosumab; discontinue potassium phosphate 1 week prior to initiation of burosumab.
Caffeine: (Major) Sodium phosphates should be used with caution in patients using concomitant medications that lower the seizure threshold like psychostimulants.
Calcium: (Moderate) The oral absorption of phosphorus is reduced by ingestion of pharmacologic doses of calcium carbonate or other phosphate-lowering calcium salts (e.g., calcium acetate). There is, however, no significant interference with phosphorus absorption by oral dietary calcium at intakes within the typical adult range. If the patient requires multiple calcium supplements or a calcium-containing antacid, it may be wise to separate the administration of phosphorus salts from calcium-containing products. In some instances the administration of calcium salts or calcium carbonate is used therapeutically (e.g., uremia) to decrease serum phosphorus levels, so the administration of phosphorus supplements would dynamically counteract the intended use of calcium in these settings, assuming hypophosphatemia is not present. Appropriate calcium-phosphorus ratios in vivo are important for proper calcium homeostasis in tissues and bone; if the serum ionized calcium concentration is elevated, the concomitant use of calcium salts and phosphorus salts may increase the risk of calcium deposition in soft tissue.
Calcium; Vitamin D: (Major) High intake of phosphates concomitantly with vitamin D or vitamin D analogs may lead to hyperphosphatemia. Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with phosphorus salts. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia.
Candesartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Candesartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Captopril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Captopril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Chlorpheniramine; Pseudoephedrine: (Minor) It has been reported that high intakes of phosphates, such as are found in dietary supplements or food additives, can interfere with absorption of trace nutrients such as iron, copper, and zinc. The magnitude of the effect may be small, and the interactions require further study to judge clinical significance. The theorized mechanism is the formation of insoluble complexes within the gut. Until more data are available, it may be helpful to separate administration times of potassium phosphate; sodium phosphateby as much as possible from the oral administration of iron (e.g., iron salts or polysaccharide-iron complex), copper salts, or zinc salts to limit any potential interactions.
Choline Salicylate; Magnesium Salicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Ciclesonide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Colchicine: (Moderate) Colchicine is an alkaloid that is inhibited by acidifying agents. The colchicine dose may need adjustment.
Colestipol: (Moderate) Colestipol may interfere with the oral absorption of phosphorus salts. According to the manufacturer, administer other drugs at least 1 hour before or at least 4-6 hours after the administration of colestipol. The manufacturer also recommends that the interval between the administration of colestipol and other drugs should be as long as possible.
Corticosteroids: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Cortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Cyclosporine: (Major) Avoid coadministration of potassium phosphate and cyclosporine as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Deflazacort: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Dexamethasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Diazoxide: (Moderate) Use sodium phosphates cautiously with diazoxide, as concurrent use can cause hypernatremia.
Dichlorphenamide: (Moderate) Use dichlorphenamide and sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous together with caution. Dichlorphenamide increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including laxatives. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dichlorphenamide dose or discontinuing dichlorphenamide therapy.
Diflunisal: (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels.
Digoxin: (Major) Avoid coadministration of potassium phosphate and digoxin as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Enalapril, Enalaprilat: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Enalapril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Eplerenone: (Contraindicated) Eplerenone should not be used concomitantly with potassium supplements (including dietary salt substitutes containing potassium) because of the increased risk of developing hyperkalemia. The use of eplerenone in hypertensive patients treated with these medications is contraindicated. When medically necessary to replace losses, use potassium phosphates cautiously with eplerenone, as both drugs increase serum potassium concentrations. Those at risk for hyperkalemia include elderly patients or patients with impaired renal function. Patients at risk for hyperkalemia include elderly patients or patients with impaired renal function. Patients should have serum potassium and other electrolyte concentration determinations at periodic intervals.
Eprosartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Eprosartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Erdafitinib: (Major) Avoid coadministration of potassium phosphate with erdafitinib before the initial dose increase period (days 14 to 21) which is based on serum phosphate levels. Potassium phosphate increases serum phosphate levels. Erdafitinib causes hyperphosphatemia as a consequence of FGFR inhibition. Changes in serum phosphate levels by potassium phosphate may interfere with the determination of this initial dose increase and may cause additive hyperphosphatemia. (Major) Avoid coadministration of sodium phosphates with erdafitinib before the initial dose increase period (days 14 to 21) which is based on serum phosphate levels. Sodium phosphates increase serum phosphate levels. Erdafitinib causes hyperphosphatemia as a consequence of FGFR inhibition. Changes in serum phosphate levels by sodium phosphate may interfere with the determination of this initial dose increase and may cause additive hyperphosphatemia.
Finerenone: (Moderate) Monitor serum potassium concentrations closely if finerenone and potassium supplements are used together. Concomitant use may increase the risk of hyperkalemia.
Fludrocortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Flunisolide: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Salmeterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fluticasone; Vilanterol: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Food: (Moderate) Foods containing oxalates (found in vegetables like rhubarb, tomatoes, celery, and spinach; as well as berries, beans, nuts and chocolate) or phytates (found in bran and whole-grain cereals) may reduce the absorption of phosphorus by forming complexes with the phosphorus salt.
Formoterol; Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Fosinopril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Fosinopril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Hydralazine: (Moderate) Use sodium phosphates cautiously with hydralazine as concurrent use can cause hypernatremia.
Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Use sodium phosphates cautiously with hydralazine as concurrent use can cause hypernatremia.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Use sodium phosphates cautiously with hydralazine as concurrent use can cause hypernatremia.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Use sodium phosphates cautiously with methyldopa, as concurrent use can cause hypernatremia.
Hydrochlorothiazide, HCTZ; Moexipril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Hydrocortisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Intrauterine Copper Contraceptive: (Moderate) It has been reported that high intakes of phosphates, such as are found in dietary supplements or food additives, can interfere with absorption of trace nutrients such as iron, copper, and zinc. The magnitude of the effect may be small, and the interactions require further study to judge clinical significance. The theorized mechanism is the formation of insoluble complexes within the gut. Until more data are available, it may be helpful to separate administration times of phosphorus salts by as much as possible from the oral administration of iron (e.g., iron salts or polysaccharide-iron complex), copper salts, or zinc salts to limit any potential interactions.
Irbesartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Irbesartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Iron: (Moderate) It has been reported that high intakes of phosphates, such as are found in dietary supplements or food additives, can interfere with absorption of trace nutrients such as iron, copper, and zinc. The magnitude of the effect may be small, and the interactions require further study to judge clinical significance. The theorized mechanism is the formation of insoluble complexes within the gut. Until more data are available, it may be helpful to separate administration times of phosphates by as much as possible from the oral administration of iron (e.g., iron salts or polysaccharide-iron complex), copper salts, or zinc salts to limit any potential interactions.
Lisinopril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Lisinopril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Losartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Losartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Magnesium Hydroxide: (Major) Aluminum hydroxide and magnesium hydroxide (as well as other antacids, i.e. aluminum hydroxide; magnesium carbonate, aluminum hydroxide; magaldrate; magnesium hydroxide, and aluminum hydroxide; magnesium trisilicate) may interact with urinary acidifiers by alkalinizing the urine. Frequent use of these high dose antacids should be avoided in patients receiving urinary acidifiers. (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products.
Magnesium Salicylate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Magnesium Salts: (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products.
Magnesium: (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products.
Methadone: (Minor) As methadone is a weak base, the renal elimination of methadone is increased by urine acidification. Thus acidifying agents may lower the serum methadone concentration. The limited amounts of circulating methadone that undergo glomerular filtration are partially reabsorbed by the kidney tubules, and this reabsorption is pH-dependent. Several studies have demonstrated that methadone is cleared faster from the body with an acidic urinary pH as compared with a more basic pH.
Methyldopa: (Moderate) Use sodium phosphates cautiously with methyldopa, as concurrent use can cause hypernatremia.
Methylprednisolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Moexipril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Nebivolol; Valsartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Olmesartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Olmesartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Olopatadine; Mometasone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Penicillin G: (Moderate) Use potassium phosphates cautiously with high-doses of IV potassium penicillin G, as both drugs increase serum potassium concentrations. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Patients should have serum potassium concentration determinations at periodic intervals.
Perindopril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Perindopril; Amlodipine: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium-sparing diuretics: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Prednisolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Prednisone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Probenecid; Colchicine: (Moderate) Colchicine is an alkaloid that is inhibited by acidifying agents. The colchicine dose may need adjustment.
Quinapril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Quinapril; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Ramipril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Sacubitril; Valsartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Salsalate: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Sevelamer: (Contraindicated) Pharmacologically, sevelamer decreases serum phosphate concentrations. Therefore, phosphate salts would be expected to counteract the pharmacological benefits of sevelamer. It would be illogical to administer phosphate or phosphorus salts to patients who require sevelamer.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Phosphate may bind magnesium salts and magnesium-containing antacids (e.g., magnesium carbonate, magnesium hydroxide) may limit phosphorus absorption or phosphorus may limit magnesium absorption. If the patient requires magnesium supplements or a magnesium-containing antacid, it may be wise to separate the administration of phosphates from magnesium-containing products.
Sparsentan: (Moderate) Monitor potassium during concomitant use of sparsentan and potassium phosphate. Concomitant use increases the risk for hyperkalemia.
Spironolactone: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Spironolactone; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Sucralfate: (Moderate) Serum phosphorus should be checked routinely in patients treated chronically with sucralfate; sucralfate may cause hypophosphatemia and some patients may require phosphorus repletion. This nutrient interaction should be considered in patients receiving phosphates for dietary supplementation. It appears that sucralfate chelates phosphorus in the gut, forming nonabsorbable complexes. Because of sucralfate's therapeutic effect, this interaction may not be prevented by separating times of oral administration.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Use potassium phosphate cautiously with trimethoprim (especially high dose), as both drugs increase serum potassium concentrations. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Monitor serum potassium concentrations at periodic intervals.
Tacrolimus: (Major) Avoid coadministration of potassium phosphate and tacrolimus as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Telmisartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Telmisartan; Amlodipine: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Telmisartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Trandolapril: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Trandolapril; Verapamil: (Major) Avoid coadministration of potassium phosphate and angiotensin-converting enzyme inhibitors as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Triamcinolone: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
Triamterene: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Triamterene; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Trientine: (Major) In general, oral mineral supplements should not be given since they may block the oral absorption of trientine. However, iron deficiency may develop, especially in children and menstruating or pregnant women, or as a result of the low copper diet recommended for Wilson's disease. If necessary, iron may be given in short courses, but since iron and trientine each inhibit oral absorption of the other, 2 hours should elapse between administration of trientine and iron doses.
Trimethoprim: (Moderate) Use potassium phosphate cautiously with trimethoprim (especially high dose), as both drugs increase serum potassium concentrations. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Monitor serum potassium concentrations at periodic intervals.
Valsartan: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Valsartan; Hydrochlorothiazide, HCTZ: (Major) Avoid coadministration of potassium phosphate and angiotensin II receptor antagonists as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Vitamin D analogs: (Major) High intake of phosphates concomitantly with vitamin D analogs may lead to hyperphosphatemia. Dose adjustment of vitamin D analogs may be necessary during coadministration with phosphorus salts. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia.
Vitamin D: (Major) High intake of phosphates concomitantly with vitamin D or vitamin D analogs may lead to hyperphosphatemia. Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with phosphorus salts. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia.
Vitamin D: (Major) High intake of phosphates concomitantly with vitamin D or vitamin D analogs may lead to hyperphosphatemia. Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with phosphorus salts. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia.
Zinc Salts: (Minor) It has been reported that high intakes of phosphates, such as are found in dietary supplements or food additives, can interfere with absorption of trace nutrients such as iron, copper, and zinc. The magnitude of the effect may be small, and the interactions require further study to judge clinical significance. The theorized mechanism is the formation of insoluble complexes within the gut. Until more data are available, it may be helpful to separate administration times of potassium phosphate; sodium phosphateby as much as possible from the oral administration of iron (e.g., iron salts or polysaccharide-iron complex), copper salts, or zinc salts to limit any potential interactions.
Zinc: (Minor) It has been reported that high intakes of phosphates, such as are found in dietary supplements or food additives, can interfere with absorption of trace nutrients such as iron, copper, and zinc. The magnitude of the effect may be small, and the interactions require further study to judge clinical significance. The theorized mechanism is the formation of insoluble complexes within the gut. Until more data are available, it may be helpful to separate administration times of potassium phosphate; sodium phosphateby as much as possible from the oral administration of iron (e.g., iron salts or polysaccharide-iron complex), copper salts, or zinc salts to limit any potential interactions.