CLASSES
Opiate Anesthetics
Opioid Agonists
BOXED WARNING
Accidental exposure, alcoholism, depression, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse
Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, including the use of extended-release/long-acting opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed an opioid. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing opioids. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Keep opioids out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Advise patients and caregivers to wash hands after handling any fentanyl product or packaging and to seek immediate medical help if an accidental exposure occurs. Cases of pediatric accidental exposure to the patch have resulted in hospitalization and death; more than half of the cases evaluated by the FDA have involved children under the age of 2 years, indicating the mobility and curiosity of toddlers provides ample opportunity for finding improperly stored or discarded patches. Contact with unwashed or unclothed application sites from the transdermal patch can result in secondary exposure and should be avoided; examples include transfer of the drug to a child's body while hugging, sharing the same bed as the patient, or accidentally sitting on a patch. Used patches still may contain enough fentanyl to cause a fatal overdose in a child, adult, or pet. After 3 days of continuous use, a patch may contain approximately 30% to 85% of the original drug content. Placing a patch in the mouth, chewing it, or swallowing it may cause choking or overdose that may be fatal. Buccal absorption of fentanyl is increased more than 30-fold compared to transdermal absorption and allows large amounts of drug to rapidly enter the circulation. Swallowing an intact patch results in less rapid drug release, however, systemic absorption is still significant. To limit curiosity and/or poor adhesion, patches should not be applied in the company of children, to an area of the body where children can see it, or on areas of frequent movement. In addition, persons should frequently check that transdermal systems have not fallen off, particularly after exercising, bathing, and sleeping. Proper disposal out of reach or children or pets is essential. Dispose of the fentanyl patch by folding the adhesive side of the patch to itself, then flush the patch down the toilet. If an Abstral, Actiq, Fentora, Onsolis, Lazanda, or Subsys unit is not completely consumed or is no longer needed, it must be properly disposed of as soon as possible. Dispose of Abstral, Actiq, Fentora, Onsolis by flushing the medication down the toilet; do not flush foil packages or cartons. Discard fentanyl from Lazanda nasal spray and Subsys sublingual spray according to manufacturer instructions. Direct exposure to the adhesive gel in fentanyl patches or to the iontophoretic transdermal system or its hydrogel components may lead to serious adverse events such as respiratory depression and fatal overdose. If accidental skin contact occurs, thoroughly rinse exposed skin with large amounts of water; do not use soap, alcohol, or other solvents to remove the gel because they may enhance the drug's ability to penetrate the skin. If the iontophoretic transdermal system is not handled with gloves by health care providers, accidental overdose may occur. Because the risk of overdose increases as opioid doses increase, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Extended-release opioids are not intended for use in the management of acute pain or on an as-needed basis but rather only for the management of severe and persistent pain that requires an extended treatment period with a daily opioid and for which alternative treatment options are inadequate. Discuss the availability of naloxone with all patients and consider prescribing it in persons who are at increased risk of opioid overdose, such as those who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose. [49933] [55856]
Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, pulmonary disease, requires a specialized care setting, respiratory depression, respiratory insufficiency, sleep apnea, status asthmaticus
Nonparenteral fentanyl products are contraindicated for use in persons with acute or severe asthma (e.g., status asthmaticus) in unmonitored care settings or in the absence of resuscitative equipment.[29623] [29763] [32731] [43055] [44875] [48165] [59568] Fentanyl buccal tablets, lozenges, nasal spray, transdermal patches, and the iontophoretic transdermal system are contraindicated for use in persons with significant respiratory depression.[29623] [29763] [32731] [59568] Parenteral fentanyl use requires a clinician trained in the use of anesthetic drugs, airway management, and assisted ventilation. Parenteral fentanyl use also requires a specialized care setting. Adequate facilities for the management of postoperative respiratory depression must be available when using injectable fentanyl. Use of the fentanyl iontophoretic transdermal system requires medical personnel with expertise in pain management and the detection and management of hypoventilation, including close observation, supportive measures, and use of opioid antagonists if needed. The fentanyl iontophoretic transdermal system is for hospital use only by patients under medical supervision and direction; the fentanyl iontophoretic transdermal system must be removed prior to discharge. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring and dose titration are required, particularly when CYP3A4 inhibitors or inducers are used concomitantly. Concomitant use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma fentanyl concentrations and potentiate the risk of fatal respiratory depression. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.  [61143]
Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy
Use fentanyl during pregnancy only if the potential benefit justifies the potential risk to the fetus. Data are insufficient with fentanyl in human pregnancy to inform a drug-associated risk for major birth defects or miscarriage. Chronic maternal treatment with fentanyl during pregnancy has been associated with transient respiratory depression, behavioral changes, or seizures characteristic of neonatal abstinence syndrome in newborn infants. Symptoms of neonatal respiratory or neurological depression were no more frequent than expected in most studies of infants born to women treated acutely during labor with intravenous or epidural fentanyl. Transient neonatal muscular rigidity has been observed in infants whose mothers were treated with intravenous fentanyl. In animal reproduction studies, fentanyl administration to pregnant rats during organogenesis was embryocidal at doses within the range of the human recommended dosing. When administered during gestation through lactation, fentanyl administration to pregnant rats resulted in reduced pup survival and developmental delays at doses within the range of the human recommended dosing. No evidence of malformations were noted in animal studies. Fentanyl is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]
Ambient temperature increase, fever, heating pad, skin abrasion, sunlight (UV) exposure
Application of transdermal patches to areas of preexisting skin abrasion can subject the patient to an additional risk of local adverse effects; patches are only for application to intact skin. Also, use only intact patches; use of damaged or cut patches can lead to a potentially fatal fentanyl dose due to rapid drug release. Serum concentrations of fentanyl could increase by approximately one-third in patients with fever more than 104 degrees F (40 degrees C) due to temperature dependent increase in fentanyl release from the transdermal system and increased skin permeability. Patients with fever who are wearing fentanyl transdermal patches should be carefully monitored for increased side effects and dosage adjustments may be necessary. Patients should avoid strenuous exertion that may increase core body temperature. Application of heat over fentanyl transdermal patches worn by healthy adults increased fentanyl mean serum concentration (Cmax) by 61% and mean systemic exposure (AUC) by 120%. Fatal overdose attributable to heat exposure has occurred. Patients should be advised to avoid exposing the transdermal application site to direct external heat sources, such as a heating pad, electric blankets, heat lamps, saunas, hot tubs, heated water beds, hot baths, sunbathing (including tanning beds and other sunlight (UV) exposure), conditions of ambient temperature increase, etc.
DEA CLASS
Rx, schedule II
DESCRIPTION
Phenylpiperidine synthetic opiate agonist
Used with general, regional, and spinal anesthesia; also for chronic and breakthrough pain
Formulations not interchangeable on a mcg-to-mcg basis, even those administered via same route, due to significant pharmacokinetic differences
COMMON BRAND NAMES
ABSTRAL, Actiq, Duragesic, Fentora, IONSYS, Lazanda, Sublimaze, SUBSYS
HOW SUPPLIED
ABSTRAL/Fentanyl Citrate/Fentora Sublingual Tablet, SL: 100mcg, 200mcg, 300mcg, 400mcg, 600mcg, 800mcg
Actiq/Fentanyl Citrate Buccal Lozenge: 200mcg, 400mcg, 600mcg, 800mcg, 1200mcg, 1600mcg
Actiq/Fentanyl Citrate Transmucosal Lozenge: 200mcg, 400mcg, 600mcg, 800mcg, 1200mcg, 1600mcg
Duragesic/Fentanyl Transdermal Film ER: 1h, 12mcg, 25mcg, 37.5mcg, 50mcg, 62.5mcg, 75mcg, 87.5mcg, 100mcg
Fentanyl Citrate/Fentora Buccal Tablet, SL: 100mcg, 200mcg, 400mcg, 600mcg, 800mcg
Fentanyl Citrate/Fentora Transmucosal Tablet, SL: 100mcg, 200mcg, 400mcg, 600mcg, 800mcg
Fentanyl Citrate/Sublimaze Intramuscular Inj Sol: 1mL, 50mcg
Fentanyl Citrate/Sublimaze Intravenous Inj Sol: 1mL, 50mcg
IONSYS Transdermal Patch, Electrically Controlled: 1actuation, 40mcg
Lazanda Nasal Spray Met: 1actuation, 100mcg, 300mcg, 400mcg
Lazanda Transmucosal Spray Met: 1actuation, 100mcg, 300mcg, 400mcg
SUBSYS Sublingual Spray Met: 1actuation, 100mcg, 200mcg, 400mcg, 600mcg, 800mcg
DOSAGE & INDICATIONS
For the treatment of severe pain where treatment with an opioid is appropriate and for which alternative treatments are inadequate.
For the treatment of intraoperative or procedural pain, for use only in a monitored anesthesia care setting in the hospital.
Intravenous or Intramuscular dosage
Adults
50 to 100 mcg IM, or by slow IV over 1 to 2 minutes, given 30 to 60 minutes before surgery.
For the treatment of postoperative pain in the recovery room.
Intravenous or Intramuscular dosage
Adults
50 to 100 mcg IM or slow IV over 1 to 2 minutes for the control of pain, tachypnea, and/or delirium. The dose may be repeated in 1 to 2 hours, as needed.
Children and Adolescents 2 to 17 yearsâ€
0.5 to 2 mcg/kg/dose (Max initial dose: 50 mcg/dose) IV or IM every 1 to 2 hours as needed. In general, young children require higher doses (e.g., 2 to 3 mcg/kg/dose) than older children and adolescents. Titrate dosage as needed to achieve adequate pain relief.
Infants and Children 1 month to 1 yearâ€
0.5 to 2 mcg/kg/dose IV or IM every 1 to 2 hours as needed. In general, young children require higher doses (e.g., 2 to 3 mcg/kg/dose) than infants and older children. Titrate dosage as needed to achieve adequate pain relief.
Neonatesâ€
0.5 to 3 mcg/kg/dose IV every 2 to 4 hours as needed. Titrate dosage as needed to achieve adequate pain relief.
Epidural dosageâ€
Adults
Initial bolus doses range 10 mcg to 100 mcg, depending on clinical condition for use. Typical fentanyl continuous epidural rate range for post-surgical pain control: 0.5 to 1 mcg/kg/hour epidurally. Standard epidural concentrations and dose regimens may vary with condition for use. Patients often receive concomitant epidural bupivacaine at concentrations of 0.0625% or 0.075%. Fentanyl has also been used in patient controlled epidural analgesia protocols (PCEA), with varied dosing regimens depending on the setting of use and if bupivacaine or ropivacaine are used concurrently in the epidural regimen. Use preservative-free solutions.
For the treatment of persistent, severe pain that requires an extended treatment period with a daily opioid and for which alternative treatments are inadequate.
Transdermal dosage (Duragesic)
Adults
TO CONVERT OPIOID-TOLERANT ADULT PATIENTS FROM OTHER OPIATE AGONISTS TO FENTANYL TRANSDERMAL 72-HOUR SYSTEM: 1) Calculate the previous 24-hour opioid analgesic requirement; 2) Convert this amount to the equianalgesic oral morphine dose; 3) follow the FDA-approved conversion chart in the product label to convert 24-hour oral morphine equivalents dose to the corresponding transdermal fentanyl system dose. Initially, apply at minimum a 25 mcg/hour transdermal patch for patients receiving at least 60 mg/day oral morphine equivalents. Discontinue all other around-the-clock opioid drugs upon transdermal fentanyl initiation. 4) Change patch system every 72 hours. DOSE TITRATION: If adequate analgesia is not achieved, may titrate the initial dosage upward after 3 days (72 hours); subsequent titrations should be made no more frequently than every 6 days. Use short-acting opioid agonists as needed for 24 hours after initial application; breakthrough pain may require supplemental doses even after a transdermal dose is established. Appropriate transdermal system dosage adjustments should be based on the daily dose of supplementary opioids, using the ratio of 45 mg/day of oral morphine to a 12.5 mcg/hour increase in fentanyl dosage. The patch should be changed every 72 hours; however, some patients may require patch application at 48-hour intervals to maintain adequate analgesia. Monitor patients frequently for respiratory depression, particularly during the first 24 to 72 hours after initiation or dose escalation. DISCONTINUATION: To convert to another opioid, remove the fentanyl transdermal system and titrate the dose of the new analgesic to adequate pain relief. Once the patch is removed, 17 hours or more are required for a 50% decrease in fentanyl concentrations. To discontinue the transdermal system when not converting to another opioid, gradually decrease the system dose by 50% every 6 days. Monitor patients for withdrawal symptoms, as these are possible with dose conversion or adjustment. Transdermal fentanyl should be reserved for patients in whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would otherwise provide inadequate pain management. Opioid-tolerant adult patients are defined as those taking, for a minimum of 1 week, at least 60 mg/day oral morphine, 30 mg/day oral oxycodone, 8 mg/day oral hydromorphone, or an equivalent dose of another opioid.
Children and Adolescents 2 to 17 years
TO CONVERT OPIOID-TOLERANT PEDIATRIC PATIENTS FROM OTHER OPIATE AGONISTS TO FENTANYL TRANSDERMAL 72-HOUR SYSTEM: 1) Calculate the previous 24-hour opioid analgesic requirement; 2) Convert this amount to the equianalgesic oral morphine dose; 3) follow the FDA-approved conversion chart in the product label to convert 24-hour oral morphine equivalents dose to the corresponding transdermal fentanyl system dose. Initially, apply at minimum a 25 mcg/hour transdermal patch for patients receiving at least 60 mg/day oral morphine equivalents. Discontinue all other around-the-clock opioid drugs upon transdermal fentanyl initiation. Some experts suggest opioid-tolerant pediatric patients receiving 30 mg/day or more of oral morphine equivalents can be safely initiated on the 12.5 mcg/hour transdermal system. Open-label trials have started opioid-tolerant pediatric patients receiving 45 mg/day of oral morphine equivalents on a fentanyl transdermal system of 25 mcg/hour with a low incidence of adverse respiratory events. 4) Change patch system every 72 hours. DOSE TITRATION: If adequate analgesia is not achieved, may titrate the initial dosage upward after 3 days (72 hours); subsequent titrations should be made no more frequently than every 6 days. Use short-acting opioid agonists as needed for 24 hours after initial application; breakthrough pain may require supplemental doses even after a transdermal dose is established. Appropriate transdermal system dosage adjustments should be based on the daily dose of supplementary opioids, using the ratio of 45 mg/day of oral morphine to a 12.5 mcg/hour increase in fentanyl dosage. Change patch system every 72 hours; dosing intervals less than this are not recommended in children and adolescents. Monitor patients frequently for respiratory depression, particularly during the first 24 to 72 hours after initiation or dose escalation. DISCONTINUATION: To convert to another opioid, remove the fentanyl transdermal system and titrate the dose of the new analgesic to adequate pain relief. Once the patch is removed, 17 hours or more are required for a 50% decrease in fentanyl concentrations. To discontinue the transdermal system when not converting to another opioid, gradually decrease the system dose by 50% every 6 days. Monitor patients for withdrawal symptoms, as these are possible with dose conversion or adjustment.
For the treatment of severe breakthrough pain in opioid-tolerant patients.
Transmucosal dosage (e.g., Actiq oral lozenge or generic equivalents ONLY)
Adults and Adolescents 16 years and older
Initially, a single 200-mcg lozenge (Actiq) placed between the cheek and lower gum as needed for breakthrough pain. The unit should be sucked, not chewed, over a period of 15 minutes. If pain is not relieved within 15 minutes after complete consumption, may repeat dose once. Max: 2 lozenge units/breakthrough pain episode. Do not repeat additional dosing for at least 4 hours. Max: 4 lozenge units/day. An initial titration supply of only six 200-mcg lozenge units should be prescribed to limit the number of units in the home and decrease the potential for confusion and overdose. Patients/caregivers should only have 1 strength of lozenge available. TITRATION: If several consecutive breakthrough pain episodes require more than 1 unit for treatment, practitioners should increase the dose to the next available strength. Evaluate the new dose over 1 to 2 days to determine if adequate pain relief and acceptable side effects occur. Re-evaluate maintenance opioid therapy if the patient experiences more than 4 episodes/day of breakthrough pain once an appropriate breakthrough dose is determined. If respiratory depression or signs of excessive sedation occur before unit is completely consumed, immediately remove unit from the patient's mouth; subsequent doses should be decreased.
Buccal or Sublingual dosage (Fentora buccal tablets ONLY)
Adults
Initially for a breakthrough pain episode, 100 mcg buccally (placed above a rear molar between the upper cheek and gum) until the buccal tablet has disintegrated. Patients must not suck, chew, or split the tablets. The patient may swallow any fragments that remain after 30 minutes. During an episode of breakthrough pain, one additional dose of the same strength, if needed, may be taken 30 minutes after the start of the previous administration, but no further doses may be used for the episode. At least 4 hours must elapse before treating the next breakthrough pain episode with Fentora. TITRATION: If treatment of several consecutive breakthrough pain episodes requires more than 1 dose/episode, increase the dose. For example, if more than 100 mcg is needed, place one 100 mcg tablet on each side of the mouth in the buccal cavity (total of two 100 mcg tablets). If this dose does not control the pain, place two 100 mcg tablets on each side of the mouth in the buccal cavity (total of four 100 mcg tablets). Titrate above 400 mcg/dose by 200 mcg increments. Once an effective dose has been achieved, use only one Fentora tablet of the correct dose strength per breakthrough pain episode and administer either via the buccal (between the upper cheek and gum above a rear molar) or sublingual (under the tongue) route. Once an appropriate breakthrough pain dose is determined, re-evaluate the maintenance (round-the-clock) opioid dose if there are more than 4 breakthrough pain episodes/day. SAFETY: To help prevent confusion and overdose, minimize the number of tablet strengths available to a patient at any time. Instruct patients to use all units of a particular strength before increasing to a higher dose. USE FOR OPIOID TOLERANT PATIENTS ONLY: Patients considered opioid tolerant are those taking for 1 week or longer opiates equivalent to at least: 60 mg/day PO morphine, 25 mcg/hour of transdermal fentanyl, 30 mg/day PO oxycodone, 8 mg/day PO hydromorphone, or 25 mg/day PO oxymorphone.
Transmucosal dosage (Onsolis oral dissolving film ONLY)
Adults
Initially, place a 200-mcg film on the inside of the cheek. Conversion instructions are not available for any other fentanyl product; always initiate at the 200-mcg dose regardless of previous breakthrough pain medication use. Titrate by 200 mcg in each subsequent episode until the dose provides adequate analgesia with tolerable side effects. Separate doses by at least 2 hours. Use only one dose per episode of breakthrough pain. During titration, multiple films may be placed on both sides of the mouth; do NOT overlap or stack films on top of each other. Do not use more than four 200-mcg films simultaneously. Doses of 1,200 mcg are achieved by using one 1,200 mcg film. Maximum: 1,200 mcg/dose and not to exceed 4 doses per day. Once an adequate dose for breakthrough pain episodes is determined, re-evaluate the dose of the maintenance (around-the-clock) opioid if a patient has greater than 4 breakthrough pain episodes per day. USE FOR OPIOID TOLERANT PATIENTS ONLY: Patients considered opioid tolerant are those who are taking for 1 week or longer opiates equivalent to at least: 60 mg/day PO morphine, 25 mcg/hour of transdermal fentanyl, 30 mg/day PO oxycodone, 8 mg/day PO hydromorphone, or 25 mg/day PO oxymorphone.
Sublingual tablet dosage (Abstral ONLY)
Adults
Initially, 100 mcg sublingually until dissolved. Conversion instructions are not available for any other fentanyl product other than Actiq; therefore, except for patients already using Actiq, always initiate Abstral at the same dose (100 mcg) regardless of previous pain medication dosing. During an episode of breakthrough pain, 1 additional dose of the same strength, if needed, may be taken 30 minutes after the previous dose was given. Do not use more than 2 doses of Abstral per episode of breakthrough pain. At least 2 hours must elapse before treating another breakthrough pain episode. CONVERSION FROM ACTIQ: For patients on a current Actiq dose of 400 mcg or less, start Abstral at 100 mcg/dose and titrate using multiples of 100 mcg. For patients converting from an Actiq dose of 600 to 1200 mcg, start Abstral at 200 mcg/dose and titrate using multiples of 200 mcg. For patients converting from Actiq 1600 mcg, start Abstral 400 mcg/dose and titrate using multiples of 400 mcg. TITRATION: Titrate dose over consecutive episodes of breakthrough pain, as needed. In patients on a current Abstral dose of 100 to 300 mcg, titrate using multiples of 100 mcg. In patients on a current Abstral dose of 400 to 600 mcg, titrate using multiples of 200 mcg. Doses more than 800 mcg have not been studied. Do not exceed 4 sublingual tablets at a time. Do not treat more than 4 episodes of breakthrough pain in a day with Abstral. If a patient has greater than 4 breakthrough pain episodes per day once breakthrough pain dose is stable, re-evaluate the maintenance (around-the-clock) opioid dose. USE FOR OPIOID TOLERANT PATIENTS ONLY: Patients considered opioid tolerant are those who are taking for 1 week or longer opiates equivalent to at least: 60 mg/day PO morphine, 25 mcg/hour of transdermal fentanyl, 30 mg/day PO oxycodone, 8 mg/day PO hydromorphone, or 25 mg/day PO oxymorphone.
Sublingual spray dosage (Subsys ONLY)
Adults
Initially, 100 mcg sprayed sublingually. Conversion instructions are not available for any other fentanyl product other than Actiq; therefore, except for patients already using Actiq, always initiate Subsys at the same dose (100 mcg) regardless of previous pain medication dosing. CONVERSION FROM ACTIQ: For patients converting from Actiq 400 mcg/dose or less, the initial dose is 100 mcg sprayed sublingually. For patients currently on Actiq 600 to 800 mcg per dose, the initial dose is 200 mcg sprayed sublingually. Patients previously using 1,200 to 1,600 mcg of Actiq should receive an initial dose of 400 mcg sprayed sublingually. TITRATION: During an episode of breakthrough pain, one additional dose of the same strength, if needed, may be taken 30 minutes after the previous dose. Do not use more than 2 doses of Subsys per episode of breakthrough pain. At least 4 hours must elapse before treating another breakthrough pain episode. Titrate the dose carefully in a stepwise manner, as needed, after a single administration of the current dose fails to adequately treat breakthrough pain during several consecutive episodes. Titration steps are 200 mcg, 400 mcg, 600 mcg, 800 mcg, 1,200 mcg, then 1,600 mcg per dose. To avoid overdose during titration, patients should have only 1 sublingual spray strength available at any time. Once titrated to an adequate dose, patients should use only one Subsys dose of the appropriate strength per breakthrough pain episode. Do not treat more than 4 episodes of breakthrough pain in a day. Once an appropriate breakthrough dose is determined, if a patient has greater than 4 breakthrough pain episodes per day, then re-evaluate the maintenance (around-the-clock) opioid dose. USE FOR OPIOID TOLERANT PATIENTS ONLY: Patients considered opioid tolerant are those who are taking for 1 week or longer opiates equivalent to at least: 60 mg/day PO morphine, 25 mcg/hour of transdermal fentanyl, 30 mg/day PO oxycodone, 8 mg/day PO hydromorphone, or 25 mg/day PO oxymorphone.
Intranasal dosage (Lazanda)
Adults
Initially, 1 spray (100 mcg/spray) intranasally in 1 nostril. Always initiate with a 100 mcg dose, regardless of previous pain medication dosing. If adequate analgesia is obtained within 30 minutes of administration, continue to treat subsequent episodes of breakthrough pain with this dose. At least 2 hours must elapse before another dose. If adequate analgesia is not obtained within 30 minutes of administration, may titrate at consecutive episodes of breakthrough pain. During any episode of breakthrough cancer pain, if there is inadequate pain relief after 30 minutes following Lazanda administration, or if a separate episode of breakthrough cancer pain occurs before the next dose is permitted (i.e. within 2 hours), the patients may use a rescue medication as directed by their healthcare provider. TITRATION: Titrate if needed to find a dose that provides adequate analgesia with tolerable side effects. At least 2 hours must elapse between each dose. First increase to 200 mcg/dose (1 spray of 100 mcg/spray in each nostril). If needed, subsequent titration to 400 mcg/dose (1 spray of 400 mcg/spray in 1 nostril), 600 mcg/dose (1 spray of 300 mcg/spray in each nostril), and then 800 mcg/dose (1 spray of 400 mcg/spray in each nostril) may be used. Maximum: 800 mcg/dose per breakthrough pain episode. Treat a maximum of 4 episodes or less daily with this medication. Once an appropriate breakthrough pain dose is determined, re-evaluate the maintenance (round-the-clock) opioid dose if there are more than 4 breakthrough pain episodes/day. USE FOR OPIOID TOLERANT PATIENTS ONLY: Patients considered opioid tolerant are those taking for 1 week or longer opiates equivalent to at least: 60 mg/day PO morphine, 25 mcg/hour of transdermal fentanyl, 30 mg/day PO oxycodone, 8 mg/day PO hydromorphone, or 25 mg/day PO oxymorphone.
For the short-term treatment of acute, severe postoperative pain where treatment with an opioid in the hospital is appropriate and for which alternative treatments are inadequate.
Transdermal dosage (Ionsys iontophoretic transdermal system only)
Adults
Use only after patients have been titrated to an acceptable level of analgesia using other opioid analgesics. One dose activation delivers 40 mcg transdermally over 10 minutes. Instruct patients on how to self-operate the system; patients should self-administer doses. Apply only 1 system at a time. A maximum of six 40-mcg doses may be administered per hour. Each system operates up to 24 hours or 80 doses, whichever comes first. Each subsequent system is applied to a different skin site. Maximum total duration of treatment should not exceed 3 days (72 hours). If inadequate analgesia occurs, provide breakthrough pain medication or replace with an alternate analgesic medication. If conversion to alternate analgesic is needed upon discontinuation of the system, titrate the dose of the new analgesic until adequate analgesia is obtained, considering that serum fentanyl concentrations will gradually decrease upon system removal.
For adjuvant management of general anesthesia maintenance and intraoperative pain control.
For minor surgical procedures and for use in the immediate postoperative period.
Intravenous or Intramuscular dosage
Adults
2 mcg/kg IV or IM. Maintenance doses are infrequently needed.
Adolescents
2 mcg/kg IV or IM as a total "low" dose for induction and maintenance.
Children 2 to 12 years
2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient for induction and maintenance. In general, young children require higher doses than older children and adolescents.
Neonates†, Infants†, and Children 1 year of ageâ€
Limited data available. 2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient for induction and maintenance, based on recommended doses in children 2 to 12 years of age. In general, young children require higher doses than neonates and infants.
For major surgery, providing analgesia and some relief from the stress response.
NOTE: Respiratory depression at this dosage level requires artificial ventilation.
Intramuscular or Intravenous dosage
Adults
2 to 20 mcg/kg IM or by slow IV. Additional doses may be required for maintenance if lightening of anesthesia or surgical stress becomes evident. Respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential.
Adolescents
2 to 20 mcg/kg IV or IM as a total "moderate" dose for induction and maintenance. Respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential.
Children 2 to 12 years
2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient for induction and maintenance per the manufacturer. Larger weight-based dosing recommendations are discussed for a "moderate dose" (2 to 20 mcg/kg total dose) range, but may be excessive in this population. In general, young children require higher doses than older children and adolescents. With "moderate" dose anesthesia, respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential.
Neonates†, Infants†, and Children 1 year of ageâ€
Limited data available. 2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient based on dosing in children 2 to 12 years of age for induction and maintenance. Larger weight-based dosing recommendations are discussed for a "moderate dose" (2 to 20 mcg/kg total dose) range, but may be excessive in this population. In general, young children require higher doses than neonates and infants. With "moderate" dose anesthesia, respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential.
Intrathecal dosage
Adults
10 to 25 mcg as a single intrathecal bolus given in combination with other spinal analgesia to improve intraoperative analgesia.
For open heart surgery and other complicated procedures where surgery is prolonged and the stress response would be detrimental to the patient's well-being.
Intravenous and Intramuscular dosage
Adults
20 to 50 mcg/kg IV or IM as a total "high" dose for induction. Maintenance dosage (ranging from 25 mcg to one half the initial loading dose) will be dictated by the changes in vital signs which indicate stress and lightening of analgesia. However, the additional dosage selected must be individualized especially if the anticipated remaining operative time is short. Respiratory depression will be such that artificial ventilation during anesthesia is necessary. Postoperative ventilation and observation are essential due to extended postoperative respiratory depression. The main objective of this dosing is to produce "stress free" anesthesia.
Adolescents
20 to 50 mcg/kg IV or IM as a total "high" dose for induction and maintenance. Respiratory depression will be such that artificial ventilation during anesthesia is necessary. Postoperative ventilation and observation are essential due to extended postoperative respiratory depression. The main objective of this dosing is to produce "stress free" anesthesia.
Children 2 to 12 years
2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient for induction and maintenance per the manufacturer. Larger weight-based dosing recommendations are discussed for "moderate dose" (2 to 20 mcg/kg total dose) and "high dose" (20 to 50 mcg/kg total dose) ranges, but may be excessive in this population. In general, young children require higher doses than older children and adolescents. With "moderate" and "high" dose anesthesia, respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential. With "high" doses, postoperative ventilation is essential due to extended postoperative respiratory depression.
Neonates†, Infants†, and Children 1 year of ageâ€
Limited data available. 2 to 3 mcg/kg IV or IM as a total "low" dose may be sufficient for induction and maintenance based on dosing in children 2 to 12 years of age. Larger weight-based dosing recommendations are discussed for "moderate dose" (2 to 20 mcg/kg total dose) and "high dose" (20 to 50 mcg/kg total dose) ranges, but may be excessive in this population. In general, young children require higher doses than neonates and infants. With "moderate" and "high" dose anesthesia, respiratory depression will be such that artificial ventilation during anesthesia is necessary and careful observation of ventilation postoperatively is essential. With "high" doses, postoperative ventilation is essential due to extended postoperative respiratory depression.
For general anesthesia induction when attenuation of the responses to surgical stress is especially important such as during major surgery like open heart surgery or complicated neurological or orthopedic procedures.
Intravenous or Intramuscular dosage
Adults
50 to 100 mcg/kg by slow IV over 1 to 2 minutes or IM may be administered with oxygen and muscle relaxant, without the use of additional anesthetic agents. In certain cases, total doses up to 150 mcg/kg may be necessary to produce adequate anesthetic effect. Respiratory depression will be such that artificial ventilation during anesthesia is necessary. Postoperative ventilation and observation are essential due to extended postoperative respiratory depression.
Children and Adolescents 2 years and older
50 to 100 mcg/kg IV or IM as a total dose may be administered with oxygen and muscle relaxant, without the use of additional anesthetic agents. In certain cases, total doses up to 150 mcg/kg may be necessary to produce adequate anesthetic effect. Respiratory depression will be such that artificial ventilation during anesthesia is necessary. Postoperative ventilation and observation are essential due to extended postoperative respiratory depression.
Neonates†, Infants†, and Children 1 year of ageâ€
Limited data available for pediatrics 1 year of age and younger. Some experts describe fentanyl doses of 30 to 100 mcg/kg IV for cardiac surgery. Total doses of 50 to 100 mcg/kg IV or IM, administered with oxygen and a muscle relaxant but without the use of additional anesthetic agents may be sufficient based on dosing in children 2 to 12 years of age. In general, young children require higher doses than neonates and infants. Respiratory depression will be such that artificial ventilation during anesthesia is necessary. Postoperative ventilation and observation are essential due to extended postoperative respiratory depression.
For analgesia and/or sedation maintenance†in mechanically-ventilated intensive care patients.
Intravenous infusion dosageâ€
Adultsâ€
A loading dose of 1 to 2 mcg/kg IV is usually given, followed by a continuous IV infusion of 1 to 2 mcg/kg/hour. Titrate as needed to desired response. Alternatively, lower infusion rates of 25 to 50 mcg/hour (e.g., 0.5 mcg/kg/hour) can be initiated and the dose titrated upward, as needed.
For sedation and analgesia prior to rapid-sequence intubation (RSI)†.
Intravenous dosage
Adults
1 to 3 mcg/kg IV over 1 to 2 minutes. Give dose 1 to 3 minutes prior to intubation.
Infants, Children, and Adolescents
2 to 3 mcg/kg IV over 1 to 2 minutes is a typical dose; however, a dose range of 1 to 5 mcg/kg has been recommended. Give dose 1 to 3 minutes prior to intubation. In general, infants, older children, and adolescents require lower doses than young children.
Neonates
1 to 4 mcg/kg IV over at least 1 to 2 minutes has been recommended.
For the management of dyspnea†in patients with end-stage cancer or lung disease.
Nebulized dosageâ€
Adults
A dose of 25 mcg in 2 mL saline via nebulization has been administered to patients with improvements in respiratory rates and oxygen saturation, as well as overall patient perceptions of breathing.
For procedural sedation†of non-intubated patients during diagnostic, surgical, or other procedures.
Intravenous dosage
Adults
Titrate slowly to achieve the desired effect. The usual dose is 25 mcg IV every 3 to 5 minutes as needed. Premedication with a benzodiazepine may potentiate the response to fentanyl; a reduced fentanyl dose may be needed. NOTE: Fentanyl should be administered as a inducing agent only by those trained in anesthesia. Monitor ventilation closely.
Adolescents
0.5 to 2 mcg/kg/dose IV (Max: 50 mcg/dose). May repeat in small increments (e.g., one-half of original dose, no more than 1 mcg/kg/dose) every 3 to 5 minutes as needed; titrate slowly to desired effect. Alternatively, a single dose of 25 to 50 mcg IV may be used. If needed, may repeat the full dose (up to 50 mcg) after 5 minutes. For particularly invasive/painful procedures (e.g., bone marrow aspiration), an additional 25 mcg may be given every 5 minutes for up to 4 to 5 additional doses if needed. Onset of analgesia is approximately 2 to 5 minutes with a duration of 20 to 60 minutes. Respiratory depressive effects usually outlast the opioid effects; close monitoring of ventilation is essential.
Infants and Children 6 months and older
0.5 to 2 mcg/kg/dose IV (Max: 50 mcg/dose). May repeat in small increments (e.g., one-half of original dose, no more than 1 mcg/kg/dose) every 3 to 5 minutes as needed; titrate slowly to desired effect. Onset of analgesia is approximately 2 to 5 minutes, and the duration is about 20 to 60 minutes. Respiratory depressive effects usually outlast the opioid effects; close monitoring of ventilation is essential, particularly in younger patients.
Intranasal dosageâ€
Infants, Children, and Adolescents weighing 10 kg or more
Limited data available; most reports have been in patients weighing 10 kg or more. The injection solution was used for intranasal application as no commercially appropriate product is available. A single dose of 1 to 2 mcg/kg intranasally has been recommended. The usual maximum is 100 mcg/dose intranasally ; however, some experts recommend a maximum of 200 mcg/dose. Studies utilizing an initial dose of 1.4 mcg/kg allowed for additional doses of 15 mcg (0.2 to 1.2 mcg/kg/dose) administered every 5 minutes to a maximum total dose of 3 mcg/kg intranasally. Onset of analgesia is approximately 5 to 10 minutes with a duration of 30 minutes.
†Indicates off-label use
MAXIMUM DOSAGE
Adults
4 doses/day of Actiq, Fentora, or Onsolis transmucosal; 800 mcg/dose, 2 doses/break-thru pain episode, and 4 treated episodes/day of Abstral sublingual; 1600 mcg/dose, 2 doses/break-thru pain episode, and 4 treated episodes/day of Subsys sublingual; 800 mcg/dose and 4 doses/day of Lazanda nasal spray; 40 mcg/dose and 80 doses/day with Ionsys; with appropriate dosage titration, there is no maximum dose of other dosage forms.
Geriatric
4 doses/day of Actiq, Fentora, or Onsolis transmucosal; 800 mcg/dose, 2 doses/break-through pain episode, and 4 treated episodes/day of Abstral sublingual; 1600 mcg/dose, 2 doses/break-thru pain episode, and 4 treated episodes/day of Subsys sublingual; 800 mcg/dose and 4 doses/day of Lazanda nasal spray; 40 mcg/dose and 80 doses/day with Ionsys; with appropriate dosage titration, there is no maximum dose of other dosage forms.
Adolescents
16 to 17 years: 4 units/day of fentanyl transmucosal lozenge (i.e., Actiq). With appropriate dosage titration, there is no maximum dose of transdermal or intravenous fentanyl. The safety and efficacy of other dosage forms have not been established.
Â
13 to 15 years: With appropriate dosage titration, there is no maximum dose of transdermal or intravenous fentanyl. The safety and efficacy of other dosage forms have not been established.
Children
2 to 12 years: With appropriate dosage titration, there is no maximum dose of transdermal or intravenous fentanyl. The safety and efficacy of other dosage forms have not been established.
Â
1 year: With appropriate dosage titration, there is no maximum dose of intravenous fentanyl The safety and efficacy of other dosage forms have not been established.
Infants
With appropriate dosage titration, there is no maximum dose of intravenous fentanyl. The safety and efficacy of other dosage forms have not been established.
Neonates
With appropriate dosage titration, there is no maximum dose of intravenous fentanyl. The safety and efficacy of other dosage forms have not been established.
DOSING CONSIDERATIONS
Hepatic Impairment
Transdermal patches: Avoid use in severe hepatic impairment. Reduce the initial transdermal dose by 50% in patients with mild to moderate hepatic impairment and titrate to desired clinical effect.
Other dosage forms: Fentanyl dosage should be modified based on clinical response and degree of hepatic impairment. No quantitative recommendations are available.
Renal Impairment
Transdermal patches: Avoid use in severe renal impairment. Reduce the initial transdermal dose by 50% in patients with mild to moderate renal impairment and titrate to desired clinical effect.
Other dosage forms: Fentanyl dosage should be modified based on clinical response and degree of renal impairment. No quantitative recommendations are available.
ADMINISTRATION
Â
Fentanyl products are not bioequivalent and are not interchangeable.
Oral Administration
Other Oral Formulations
Transmucosal and sublingual formulations (Actiq, Fentora, Onsolis, Abstral, and Subsys) are not for use in the management of acute or postoperative pain. These products should only be used in opioid-tolerant patients.
Titrate initial dosage with caution and limit the initial quantity of medication prescribed.
Advise patients and caregivers that if an overdose is suspected to remove any remaining dosage formulation from the mouth and seek immediate medical help.
Â
Abstral (sublingual tablets)
If mouth is dry, water may be used to moisten buccal mucosa before administration.
Dry hands before handling.
Immediately after removing from the blister pack, place tablet on the floor of the mouth directly under the tongue. Allow tablet(s) to dissolve completely.
Do not use more than 4 tablets at one time.
Instruct patients to not suck, chew, or swallow tablet. Further, instruct patients to avoid eating or drinking until tablet is dissolved.
Disposal: Dispose of any unneeded tablets as soon as no longer needed. Remove tablets from the blister cards and flush the tablets down the toilet. Do not dispose of blister cards, cartons, or other packaging in the toilet. Caregivers may also contact the product manufacturer or local DEA office for additional assistance in drug disposal if necessary.[43055]
Â
Subsys (sublingual spray)
Open blister package with scissors immediately prior to use.
Carefully spray the entire contents of the unit into the mouth under the tongue.
Dispose of each used unit immediately after use by placing it into one of the disposable bags provided. Seal the bag and discard into a trash container out of the reach of children.
Consumed units are no longer protected by the child resistant blister package, but may contain enough medicine to be fatal to a child.
Disposal: Dispose of unused units into the provided charcoal-lined disposal pouch. Hold the charcoal-lined pouch with the opening facing up. Put the nozzle of the spray unit upside-down into the opening of the pouch. Squeeze your fingers and thumb together to spray the contents into the pouch. Dispose of the empty spray unit in a disposal bag. Repeat with any additional unused units. The pouch may be used for disposing of the contents of up to 10 spray units. Seal the pouch and place it in a disposal bag. Seal and discard the disposal bag in the trash out of the reach of children.[48165]
Â
Actiq (oral lozenge)
Place between the cheek and lower gum, occasionally moving from one side of the mouth to the other using the handle. Patients should be instructed to suck but not chew the lozenges.
Consume over 15 minutes. Longer or shorter consumption times may produce less efficacy.
Using the handle, remove the unit after it has been consumed or after the patient has achieved the desired level of sedation or is experiencing respiratory depression.
Disposal: To dispose, remove the drug matrix from the handle by grasping it with tissue and separating it from the handle using a twisting motion. Flush the drug matrix down the toilet. If any of the drug matrix remains on the handle, remove it by placing the handle under warm running water until the drug matrix dissolves. During the disposal process, avoid contract with skin, eyes, or mucous membranes. Wash hands thoroughly when finished. Disposal must be consistent with state and federal regulations.[29763]
Â
Fentora (buccal tablet)
Immediately before use, peel the blister backing away to expose the tablet. To avoid damaging the tablet, do NOT push the tablet through the blister.
Place the entire tablet either between the cheek and gum above a rear molar tooth or under the tongue. Do not break or split the tablet.
Allow to dissolve over 30 minutes. Sucking, chewing, or swallowing the tablet or any tablet fragments before 30 minutes have elapsed will produce less efficacy. Any remaining tablet may be swallowed after 30 minutes.
Have the patient spit out the tablet and rinse their mouth with water if the patient gets very sleepy, dizzy, or has slowed or labored breathing.
Disposal: Dispose of any unneeded tablets as soon as no longer needed. Remove tablets from the blister cards and flush the tablets down the toilet. Do not dispose of blister cards, cartons, or other packaging in the toilet. Caregivers may also contact the product manufacturer or local DEA office for additional assistance in drug disposal if necessary.[32731]
Â
Onsolis (oral dissolving film)
This medication is applied to the inside of the cheek. Wet the affected area with tongue or rinse of water prior to application.
Immediately before use, open package with dry hands. Do not cut or tear the film prior to use.
Using the tip of a dry finger touching the white side of the film, place one film in the mouth with the pink side of the film facing the cheek; hold in place for approximately 5 second to adhere.
If using more than one film per dose, place films separately using both sides of the mouth as needed; do not overlap or stack films.
Allow the film(s) to dissolve over 15 to 30 minutes. If chewed and swallowed, lower peak concentrations and bioavailability are expected. Drinking liquids within 5 minutes after application, touching the film with fingers or tongue after placed, or eating before the film has fully dissolved may interfere with patch adherence and drug absorption.
Disposal: Dispose of any unneeded product as soon as no longer needed. Remove each film from the foil packaging and drop into the toilet, then flush when all unneeded films have placed in the toilet. Do not dispose of foil packs, cartons, or other packaging in the toilet. Caregivers may also contact the product manufacturer or local DEA office for additional assistance in drug disposal if necessary.[40943]
Injectable Administration
Only individuals trained in the administration of general anesthetics and the management of the respiratory effects of potent opioids should give the drug. Pulse oximetry or some other means for measuring respiratory function is recommended.
Resuscitative medications, including naloxone, and size-appropriate equipment for bag/valve/mask ventilation and intubation must be readily available.
Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.
Intravenous Administration
IV Push
Inject directly into a vein or into the tubing of a freely flowing IV solution slowly over 1 to 3 minutes. Rapid IV injection of fentanyl may result in apnea.
Â
Continuous IV Infusion
May dilute in 5% Dextrose Injection or 0.9% Sodium Chloride Injection.
Commonly used infusion concentration for adults: 10 mcg/mL.
ASHP Recommended Standard Concentrations for Adult Continuous Infusions: 10 mcg/mL or 50 mcg/mL.
Institute for Safe Medication Practices (ISMP)/Vermont Oxford Network (VON) Recommended Standard Concentrations for Neonatal Fentanyl Infusions: 10 mcg/mL.
Administer using a controlled-infusion device.
Adjust dose and infusion rate based on patient response.
Intramuscular Administration
Inject into a large muscle mass.
Subcutaneous Administration
Inject subcutaneously taking care not to inject intradermally.
Fentanyl has been given as a subcutaneous continuous infusion in children weaning from prolonged sedation.
Other Injectable Administration
Epidural Administration
Epidural administration should only be used by specially trained health care professionals.
May be given as an intermittent bolus, continuous infusion, or patient-controlled epidural analgesia.
Before administration, an opioid antagonist and facilities for administration of oxygen and control of respiration should be available. The patient should be in a setting where adequate monitoring is possible.
Placement of epidural catheter and administration should be at a site near the dermatomes covering the field of pain to decrease dose requirements and increase specificity. Fentanyl only produces segmental analgesic effects and should only be used when the catheter tip is close to the incisional dermatome.
Â
Intermittent Epidural Injection
After ensuring proper placement of the needle or catheter, inject the appropriate dose into the epidural space.
Monitor patients in a fully equipped and staffed environment for at least 24 hours after each dose.
Â
Continuous Epidural Infusion
A controlled-infusion device must be used. For highly concentrated injections, an implantable controlled-microinfusion device is used. Patients should be monitored in a fully equipped and staffed environment for several days after implantation of the device.
If dilution of the injection is necessary, 0.9% Sodium Chloride Injection is recommended.
Filling of the infusion device reservoir should only be done by fully trained and qualified health care professionals. Strict aseptic technique must be used. Withdraw dose from the ampule through a 5 micron (or smaller pore diameter) microfilter to avoid contamination with glass or other particles. Ensure proper placement of the needle when filling the reservoir to avoid accidental overdose.
To avoid exacerbation of severe pain and/or reflux of CSF into the reservoir, depletion of the reservoir should be avoided.
Monitor patients in a fully equipped and staffed environment.
Topical Administration
Transdermal Patch Formulations
Short-acting analgesics may be needed during the initial 24 hours of fentanyl patch application and for breakthrough pain.
Apply the patch immediately upon removal from the package. Do not use if the pouch seal is broken or the patch is damaged.
If skin needs preparation, use clear water and clip, do not shave, hair. Do not use soaps, oils, lotions, alcohol, or any other agents that may irritate the skin. Pat skin dry completely before applying patch.
Apply patch to a flat, intact, non-irritated, and non-irradiated area on the upper torso (e.g., chest, back, flank, or upper arm). Avoid cuts and sores.
In young children or those with cognitive impairment, place the patch on the upper back to minimize the potential of inappropriate patch removal. Adhesion of the patch should be closely monitored; patients or caregivers should frequently check that the patch has not fallen off, particularly after exercising, bathing, and sleeping.
Small children have removed patches on sleeping adults or found patches that have fallen off and ingested them or applied them to themselves (e.g., like a bandage); such cases have resulted in fatality. To limit curiosity and/or poor adhesion, patients should not apply patches in the company of young children, to an area of the body where young children can see it, or on areas of frequent movement.
Do not cut the patch to deliver partial doses. If it is necessary to use a smaller and commercially unavailable dosage, placing impermeable material (e.g., adhesive bandage) on the skin under the patch may block a proportional delivery of the drug.
Firmly press the patch onto the application site with the palm of the hand for 30 seconds. Make sure contact is complete and edges adhere to the skin. If there is difficulty with adhesion, the patch edges may be taped down with first aid tape or overlayed with a transparent adhesive film dressing (e.g., Tegaderm). Avoid other tight coverings over the patch.
When applying the patch, touch the adhesive side as little as possible. Exposure to the adhesive matrix may lead to serious adverse events such as respiratory depression and fatal overdose. If unintended skin contact occurs, thoroughly rinse exposed skin with large amounts of water; do not use soap, alcohol, or other solvents as this may enhance the drug's ability to penetrate the skin.
Wash hands with soap and water immediately after patch application.
Change patch at the same time of day every 3 days (72 hours); remove any patches in use prior to application of a new patch. Rotate patch application site.
If the patch falls off before 72 hours of use (including immediately after application) dispose of patch by folding in half so that the adhesive side is inward and immediately flushing down the toilet. Use a new patch at a different skin site.
Avoid contact with unwashed or unclothed application sites; this contact may result in secondary accidental exposure. Accidental exposure may occur during activities such as hugging, bed-sharing, or accidental caregiver skin contact during patch application and removal.
Avoid exposing the patch application site and surrounding areas to external heat sources (e.g., heating pads, electric blankets, heated water beds, tanning beds, hot baths or saunas, excessive sun exposure, or hot climate). Patients should also be counseled to avoid strenuous exercise, which can heat the body.
Storage: Instruct patients, caregivers, and family members to keep patches in a secure location out of the reach of children, pets, and others for whom the drug was not prescribed.
Disposal: Instruct patients, caregivers, and family members to dispose of damaged, used, or any patches remaining from a prescription when they are no longer needed. Improperly disposed of patches can cause serious illness or death, particularly to children or pets who might be inadvertently exposed. Unused patches should be removed from their pouch, folded in half so that the adhesive side is inward, and immediately flushed down the toilet.
Other Topical Formulations
Ionsys (iontophoretic transdermal system)
Apply only 1 system at any given time. Always wear gloves when handling the system.
Remove the foil pouch and the controller from the tray. Remove the drug unit from the foil pouch and place on a hard, flat surface.
Assemble the system. Align the matching shapes of the controller and the drug unit. Press on both ends of the device to ensure that the snaps at both ends are fully engaged. One or 2 clicks will be heard when the snaps are fully engaged.
After assembly, the digital display of the controller will complete a short self-test during which there is 1 audible beep, the red light will blink once, and the digital display will flash the number "88". Following the self-test, the display will show the number 0 and a green light will blink to indicate that the system is ready for application.
Choose an application site of healthy, unbroken skin on the upper outer arm or chest only. Clip excessive hair. Do not shave as this may irritate the skin.
Clean the administration site with alcohol and let dry. Do not use soaps, lotions, or other agents.
Peel off and discard the clear plastic liner covering the adhesive and hydrogels. Do not pull the red tab while preparing to apply the system; the red tab is only to be used during disposal.
Press and hold the system in place for 15 seconds or more with sticky side facing the skin. Make sure the edges adhere to the skin.
If the system loosens from the skin, secure it by pressing the edges or use a non-allergenic tape to secure the edges. Do not apply tape if skin is blistered or broken. Apply tape along the long edges of the system. Do not tape over the button, light, or digital display. After taping if the system beeps again, remove it and apply a new system on a different skin site.
To initiate administration of a dose, the patient should press the recessed button on the top housing of the system twice within 3 seconds. A single beep indicates the start of dose delivery that occurs over 10 minutes. During this time the system is locked-out and another dose cannot be delivered. When dose delivery is complete, the display will show the number of doses delivered.
Each system will function for 24 hours or 80 doses, whichever comes first. At this time, the green light will turn off and the number of doses delivered will flash on and off. To turn off the digital display, press the dosing button for 6 seconds.
Remove the system from the patient's skin. Ensure both hydrogels (1 contains fentanyl) remain within the removed system. If a hydrogel becomes separated during removal, use gloves or tweezers to remove it from the skin and properly dispose of in accordance with state and federal regulations for controlled substances.
Do not touch exposed hydrogel compartments or adhesive. If a hydrogel is touched accidentally, rinse the area with water. Do not use soap.
If additional analgesia is needed, a new system must be applied to a different site on the upper outer arm or chest.
Disposal: With gloves on, pull the red tab to separate the red bottom housing containing fentanyl from the system. Fold the red housing in half with the sticky side facing in. Dispose of the red housing per policies for disposal of schedule II drugs or by flushing it down the toilet. Hold the dosing button down until the display goes blank and then dispose of the remaining part of the system containing electronics in waste designated for batteries.
Inhalation Administration
Intranasal Inhalation Administration
Lazanda (intranasal spray)
Confirm dosage before administration. Lazanda nasal spray is for use in opioid-tolerant adult patients only.
Prime before using for the first time. Remove the spray bottle from the child-resistant container. Remove the cap from the spray bottle. Aim the spray bottle tip into the provided pouch and depress the finger grips until "click" is heard then repeat for a total of 4 pumps; a green bar should appear in the counting window.The pump will remain primed for up to 5 days after priming or use. If the product has not been used for 5 days, re-prime by spraying once into the pouch. Retain and do not seal the medication pouch. Save the pouch and dispose of it at the appropriate time as directed in the MedGuide. Wash hands after priming.
Instruct the patient on the proper use according to MedGuide illustrated instructions.
Have patient sit during administration. If the nose is runny, blow nose prior to dosing. Place tip of the spray bottle in nostril (about one-half inch) while closing off the other nostril with a finger pressed to the side of the nose. Aim for the bridge of nose then depress finger grips until a "click" is heard. Spray may not be felt; an audible "click" and advancement of the dose counter confirm dose administration. Breathe gently in through the nose and out through the mouth one time. Repeat the steps in the other nostril if 2 sprays are needed for dose. If 4 sprays are needed for the dose, repeat the steps but alternate nostrils for each spray.
After administration advise the patient to stay sitting for 1 minute and to avoid nose blowing for 30 minutes.
Return the bottle to the child-resistant container after each use. The bottle (in the child-resistant container) and the pouch should be stored in the cardboard carton and out of the reach of children or pets. Protect from light.
Wash hands with soap and water after handling the bottle and/or pouch.
Disposal:
Discard bottle if no longer needed, if all medication has been used, or if 60 days have passed since first use.
Follow the directions for proper disposal as indicated in the MedGuide. When a red number "8" appears in the counting window, the bottle is finished. Medicine remaining in the bottle is not enough for an accurate dose.
Dispose of medication by spraying the bottle into the pouch 4 times. The counter will stay on the red number "8"; no click will be heard once the bottle is empty.
Seal the pouch and put both the pouch and the empty bottle into the child-resistant container. Twist to close. Throw the child-resistant container into the trash, out of the reach of children and pets.
Â
Fentanyl injectable solution
NOTE: There is currently no commercially available product that is FDA-approved for pediatric intranasal administration. The Lazanda nasal spray is for opioid-tolerant adults only and has not been studied in pediatric patients.
Pediatric studies have utilized the injectable solution off-label for intranasal administration at a concentration of 50 to 300 mcg/mL; however, only the 50 mcg/mL concentration is commercially available in the US.
In clinical practice, the parenteral solution is administered intranasally via drop installation with a needleless syringe or using a mucosal atomizer device. Use of the mucosal atomizer device improves absorption.
Clear the nasal passages prior to administration (e.g., suction or have the patient blow their nose).
Place the patient's head at 45 degrees.
Administer half of the dose to each nare. Do not use more than 0.5 to 1 mL of medication per nostril. If a higher dose is required, apply it in 2 separate doses a few minutes apart to allow for adequate absorption of the first dose.
The patient should remain in a semi-reclined position for several minutes after administration.
STORAGE
Generic:
- Store at 77 degrees F; excursions permitted to 59-86 degrees F
- Store in original unopened pouch
ABSTRAL:
- Protect from moisture
- Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
Actiq:
- Protect from freezing
- Protect from moisture
- Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
Duragesic:
- Avoid exposure to heat
- Store at 77 degrees F; excursions permitted to 59-86 degrees F
- Store in original unopened pouch
Fentora:
- Protect from freezing
- Protect from moisture
- Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
IONSYS:
- Store at 77 degrees F; excursions permitted to 59-86 degrees F
- Store in original container
Lazanda:
- Do not freeze
- Store at or below 77 degrees F
Onsolis:
- Protect from freezing
- Protect from moisture
- Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
Sublimaze:
- Discard product if it contains particulate matter, is cloudy, or discolored
- Discard unused portion. Do not store for later use.
- Protect from light
- Store at controlled room temperature (between 68 and 77 degrees F)
- Store in carton until time of use
SUBSYS:
- Keep away from heat and flame
- Protect from direct sunlight
- Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
- Store in a cool, well ventilated, dry place
- Store in original container
CONTRAINDICATIONS / PRECAUTIONS
General Information
Fentanyl is contraindicated in persons with fentanyl hypersensitivity or hypersensitivity to any component of the formulation.
The fentanyl iontophoretic transdermal system is contraindicated in persons with cetylpyridinium chloride hypersensitivity. Cetylpyridinium chloride is an inactive ingredient in the hydrogels of the product.
Dental work, headache, migraine, opioid-naive patients, surgery
Life-threatening hypoventilation resulting in apnea or respiratory arrest may occur at any dose of available non-parenteral fentanyl products in patients not taking chronic opioids and not tolerant to opioids. As such, the following products are contraindicated in opioid-naive patients and in the management of acute and postoperative pain: Abstral, Actiq, Duragesic, Fentora, Lazanda, Onsolis, and Subsys. Patients considered opioid tolerant are those who are using at least 60 mg/day oral morphine, 30 mg/day oral oxycodone, 8 mg/day oral hydromorphone, 25 mg oral oxymorphone/day, 25 mcg transdermal fentanyl/hour, or an equianalgesic dose of another opioid for a week or longer. However, patients who are taking fentanyl as part of ongoing analgesia therapy may be safely continued on the drug following surgery or dental work, if appropriate dosage adjustments are made considering the procedure, other drugs given, and temporary changes in physiology caused by the surgical intervention. Use of Abstral, Actiq, Fentora, Lazanda, Onsolis, and Subsys is specifically contraindicated in the acute pain conditions of headache and migraine pain; the labeling of these products contains a boxed warning contraindicating such use. Abstral, Actiq, Fentora, Lazanda, Onsolis, and Subsys are also contraindicated for use in dental pain, while Abstral and Onsolis are contraindicated for emergency room use. Duragesic (transdermal patch) is contraindicated in outpatient or day surgeries because there is no opportunity for proper dose titration, in the management of mild or intermittent pain, for use as an as needed analgesic, and in patients who require opioid analgesia for a short period of time. Parenteral fentanyl is indicated for peri-operative use.
Biliary tract disease, GI obstruction, ileus, pancreatitis
Excluding fentanyl injection, fentanyl is contraindicated in persons with known or suspected GI obstruction, including paralytic ileus. Fentanyl may cause spasm of the sphincter of Oddi. Opioids may cause increases in serum amylase. Monitor persons with biliary tract disease, including acute pancreatitis, for worsening symptoms.
Accidental exposure, alcoholism, depression, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse
Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, including the use of extended-release/long-acting opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed an opioid. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing opioids. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Keep opioids out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Advise patients and caregivers to wash hands after handling any fentanyl product or packaging and to seek immediate medical help if an accidental exposure occurs. Cases of pediatric accidental exposure to the patch have resulted in hospitalization and death; more than half of the cases evaluated by the FDA have involved children under the age of 2 years, indicating the mobility and curiosity of toddlers provides ample opportunity for finding improperly stored or discarded patches. Contact with unwashed or unclothed application sites from the transdermal patch can result in secondary exposure and should be avoided; examples include transfer of the drug to a child's body while hugging, sharing the same bed as the patient, or accidentally sitting on a patch. Used patches still may contain enough fentanyl to cause a fatal overdose in a child, adult, or pet. After 3 days of continuous use, a patch may contain approximately 30% to 85% of the original drug content. Placing a patch in the mouth, chewing it, or swallowing it may cause choking or overdose that may be fatal. Buccal absorption of fentanyl is increased more than 30-fold compared to transdermal absorption and allows large amounts of drug to rapidly enter the circulation. Swallowing an intact patch results in less rapid drug release, however, systemic absorption is still significant. To limit curiosity and/or poor adhesion, patches should not be applied in the company of children, to an area of the body where children can see it, or on areas of frequent movement. In addition, persons should frequently check that transdermal systems have not fallen off, particularly after exercising, bathing, and sleeping. Proper disposal out of reach or children or pets is essential. Dispose of the fentanyl patch by folding the adhesive side of the patch to itself, then flush the patch down the toilet. If an Abstral, Actiq, Fentora, Onsolis, Lazanda, or Subsys unit is not completely consumed or is no longer needed, it must be properly disposed of as soon as possible. Dispose of Abstral, Actiq, Fentora, Onsolis by flushing the medication down the toilet; do not flush foil packages or cartons. Discard fentanyl from Lazanda nasal spray and Subsys sublingual spray according to manufacturer instructions. Direct exposure to the adhesive gel in fentanyl patches or to the iontophoretic transdermal system or its hydrogel components may lead to serious adverse events such as respiratory depression and fatal overdose. If accidental skin contact occurs, thoroughly rinse exposed skin with large amounts of water; do not use soap, alcohol, or other solvents to remove the gel because they may enhance the drug's ability to penetrate the skin. If the iontophoretic transdermal system is not handled with gloves by health care providers, accidental overdose may occur. Because the risk of overdose increases as opioid doses increase, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Extended-release opioids are not intended for use in the management of acute pain or on an as-needed basis but rather only for the management of severe and persistent pain that requires an extended treatment period with a daily opioid and for which alternative treatment options are inadequate. Discuss the availability of naloxone with all patients and consider prescribing it in persons who are at increased risk of opioid overdose, such as those who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose. [49933] [55856]
Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, pulmonary disease, requires a specialized care setting, respiratory depression, respiratory insufficiency, sleep apnea, status asthmaticus
Nonparenteral fentanyl products are contraindicated for use in persons with acute or severe asthma (e.g., status asthmaticus) in unmonitored care settings or in the absence of resuscitative equipment.[29623] [29763] [32731] [43055] [44875] [48165] [59568] Fentanyl buccal tablets, lozenges, nasal spray, transdermal patches, and the iontophoretic transdermal system are contraindicated for use in persons with significant respiratory depression.[29623] [29763] [32731] [59568] Parenteral fentanyl use requires a clinician trained in the use of anesthetic drugs, airway management, and assisted ventilation. Parenteral fentanyl use also requires a specialized care setting. Adequate facilities for the management of postoperative respiratory depression must be available when using injectable fentanyl. Use of the fentanyl iontophoretic transdermal system requires medical personnel with expertise in pain management and the detection and management of hypoventilation, including close observation, supportive measures, and use of opioid antagonists if needed. The fentanyl iontophoretic transdermal system is for hospital use only by patients under medical supervision and direction; the fentanyl iontophoretic transdermal system must be removed prior to discharge. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring and dose titration are required, particularly when CYP3A4 inhibitors or inducers are used concomitantly. Concomitant use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma fentanyl concentrations and potentiate the risk of fatal respiratory depression. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.  [61143]
MAOI therapy
The use of fentanyl in patients who have received MAOI therapy within 14 days is not recommended. The potential for interaction appears to be idiosyncratic with poorly understood contributing factors. Although in vitro assay studies have not been undertaken and published literature is inconsistent, it has been postulated that fentanyl may be a weak serotonin reuptake inhibitor. The safe use of fentanyl in patients taking an MAOI has been reported; however, symptoms of serotonin syndrome and death occurred in one patient previously stable on the MAOI tranylcypromine following an uneventful CABG surgery in which fentanyl was administered. It is not known if coadministration of fentanyl with other drugs known to have MAOI activity may result in serotonergic side effects. Caution is advised until more data are available. If used concomitantly, appropriate monitoring and ready availability of vasodilators and beta-blockers for the treatment of hypertension are indicated.
Hepatic disease, renal failure, renal impairment
Avoid use of transdermal fentanyl in persons with severe hepatic disease or severe renal impairment and renal failure. In persons with mild to moderate hepatic or renal impairment and for persons with severe hepatic or renal impairment receiving other fentanyl formulations, use fentanyl with caution due to the extensive hepatic metabolism and renal excretion of fentanyl and its metabolites. Reduce the dose as needed and monitor for signs of respiratory depression, sedation, and hypotension.
Brain tumor, CNS depression, coma, head trauma, increased intracranial pressure, intracranial mass, seizure disorder, seizures
Avoid fentanyl use in persons with CNS depression, impaired consciousness, or coma; opioids may obscure the clinical course in a person with a head trauma injury. Monitor persons who may be susceptible to the intracranial effect of carbon dioxide retention (e.g., those with evidence of increased intracranial pressure, brain tumor, or intracranial mass) for signs of sedation and respiratory depression, particularly when initiating fentanyl therapy. Fentanyl may reduce respiratory drive and resultant carbon dioxide retention can further increase intracranial pressure. Monitor persons with a history of seizure disorder for worsened seizure control during fentanyl therapy. Fentanyl may increase the frequency of seizures in persons with seizure disorders, and may increase the risk of seizures occurring in other clinical settings associated with seizures.[29623]
Children, infants, neonates, premature neonates
Opiate agonists may be used in children with moderate to severe pain; however, all forms of fentanyl should be used cautiously in children. The age of inclusion of pediatric patients in safety and efficacy studies has varied by fentanyl product. No form of fentanyl is FDA approved for use in neonates, infants, or children < 2 years of age; transdermal patches may be used in opiate-tolerant children >= 2 years of age; fentanyl injection is used commonly in infants and children within intensive care and operative settings but use in children <= 2 years is off-label. Safety and efficacy of transmucosal forms varies by product; safety and efficacy has not been established in patients < 16 years of age for Actiq. Safety and efficacy of Abstral, Fentora, Lazanda, Onsolis, Subsys, and Ionsys have not been established in pediatric patients. Accidental ingestion or unintended exposure by children can be fatal. Instruct patients and caregivers to keep all fentanyl dosage forms out of the reach of children and to properly discard all unneeded product. Neonates and infants < 6 months of age have highly variable clearance of opiate agonists. Therefore, infants younger than 6 months of age may be given opiate agonists but must be closely monitored for apnea until 24 hours after their last dose. Clinical practice guidelines suggest close monitoring of infants up to 1 year of age. Fentanyl clearance may correlate with gestational age and birth weight; premature neonates and neonates < 1 week of age may have significantly slower clearance than other populations. Careful monitoring and titration in small dosage increments is warranted.
Hypovolemia, shock
Fentanyl may cause severe hypotension, including orthostatic hypotension and syncope in ambulatory persons. There is an increased risk in persons whose ability to maintain blood pressure has already been compromised by hypovolemia or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines, general anesthetics). Monitor for signs of hypotension after initiating or titrating the opioid dosage. Avoid the use of fentanyl in persons with circulatory shock; it may cause vasodilation that can further reduce cardiac output and blood pressure.
Breast-feeding
According to the manufacturers, fentanyl is excreted into breast milk and is not recommended for use in women who are breast-feeding. Although the American Academy of Pediatrics (AAP) considers fentanyl to be usually compatible with breast-feeding , the infants of women taking fentanyl while breast-feeding may experience sedation and/or respiratory depression. Symptoms of opioid withdrawal may occur in infants of women who discontinue fentanyl while nursing. Alternative analgesics considered to be usually compatible with breast-feeding by the AAP include acetaminophen, ibuprofen, and morphine. Fentanyl epidural use is generally considered compatible with nursing; when used for analgesia and anesthesia during labor and delivery or when used during other surgery, the healthy term infant can safely nurse as soon as the mother is awake and alert. Observe the infant for somnolence, excessive irritability, or poor feeding. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to maternal drug exposure, healthcare providers are encouraged to report the adverse effect to the FDA.
Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy
Use fentanyl during pregnancy only if the potential benefit justifies the potential risk to the fetus. Data are insufficient with fentanyl in human pregnancy to inform a drug-associated risk for major birth defects or miscarriage. Chronic maternal treatment with fentanyl during pregnancy has been associated with transient respiratory depression, behavioral changes, or seizures characteristic of neonatal abstinence syndrome in newborn infants. Symptoms of neonatal respiratory or neurological depression were no more frequent than expected in most studies of infants born to women treated acutely during labor with intravenous or epidural fentanyl. Transient neonatal muscular rigidity has been observed in infants whose mothers were treated with intravenous fentanyl. In animal reproduction studies, fentanyl administration to pregnant rats during organogenesis was embryocidal at doses within the range of the human recommended dosing. When administered during gestation through lactation, fentanyl administration to pregnant rats resulted in reduced pup survival and developmental delays at doses within the range of the human recommended dosing. No evidence of malformations were noted in animal studies. Fentanyl is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]
Geriatric
Use fentanyl with caution in geriatric or debilitated patients. Geriatric patients are more sensitive to the analgesic effects of fentanyl, as they experience a longer duration of pain relief. Sedation and respiratory depression may result from altered distribution or decreased elimination of the drug. Initial doses may need to be reduced, and doses should be carefully titrated taking into account analgesic effects, adverse reactions, and concomitant conditions or drugs that may increase CNS depression and depress respiration. According to the Beers Criteria, opiate agonists are considered potentially inappropriate medications (PIMs) in geriatric patients with a history of falls or fractures and should be avoided in these patient populations, except in the setting of severe acute pain, since opiates can produce ataxia, impaired psychomotor function, syncope, and additional falls. If an opiate must be used, consider reducing the use of other CNS-active medications that increase the risk of falls and fractures and implement strategies to reduce fall risk. In patients receiving palliative care or hospice, the balance of benefits and harms of medication management may differ from those of the general population of older adults.[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). OBRA cautions that opioids may cause constipation, nausea, vomiting, sedation, lethargy, weakness, confusion, dysphoria, physical and psychological dependency, hallucinations, and unintended respiratory depression, especially in individuals with compromised pulmonary function. These adverse effects can lead to other consequences such as falls. The initiation of longer-acting opioids is not recommended unless shorter-acting opioids have been unsuccessful, or titration of shorter-acting doses has established a clear daily dose of opioid analgesic that can be provided by using a long-acting form.[60742]
Abrupt discontinuation
Avoid abrupt discontinuation of fentanyl in a physically-dependent patient. When a patient who has been taking opioids regularly and may be physically dependent no longer requires therapy with fentanyl, taper the dose gradually while monitoring carefully for signs and symptoms of withdrawal. If the patient develops these signs or symptoms, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both. Consider tapering to reduced opioid dosage, or tapering and discontinuing long-term opioid therapy, when pain improves; the patient requests dosage reduction or discontinuation; pain and function are not meaningfully improved; the patient is receiving higher opioid doses without evidence of benefit from the higher dose; the patient has current evidence of opioid misuse; the patient experiences side effects that diminish quality of life or impair function; the patient experiences an overdose or other serious event (e.g., hospitalization, injury) or has warning signs for an impending event such as confusion, sedation, or slurred speech; the patient is receiving medications (e.g., benzodiazepines) or has medical conditions (e.g., lung disease, sleep apnea, liver disease, kidney disease, fall risk, advanced age) that increase risk for adverse outcomes; or the patient has been treated with opioids for a prolonged period and current benefit-harm balance is unclear. If the patient has a serious mental illness, is at high suicide risk, or has suicidal ideation, offer or arrange for consultation with a behavioral health provider before initiating a taper. In patients with opioid use disorder, offer or arrange for medication-assisted treatment. Individualize opioid tapering schedules. The longer the duration of previous opioid therapy, the longer the taper may take. Common tapers involve dose reduction of 5% to 20% every 4 weeks; a faster taper may be appropriate for some patients. Significant opioid withdrawal symptoms may indicate the need to pause or slow the taper. Opioids may be stopped, if appropriate, when taken less often than once daily. Advise patients that there is an increased risk for overdose on abrupt return to a previously prescribed higher dose; provide opioid overdose education, and consider offering naloxone. Monitor patients closely for anxiety, depression, suicidal ideation, and opioid use disorder, and offer support and referral as needed.
Driving or operating machinery
Warn persons against performing potentially hazardous activities such as driving or operating machinery unless they are tolerant to the effects of fentanyl and know how they will react to the medication. Fentanyl may impair mental or physical abilities required to perform such tasks.
Ambient temperature increase, fever, heating pad, skin abrasion, sunlight (UV) exposure
Application of transdermal patches to areas of preexisting skin abrasion can subject the patient to an additional risk of local adverse effects; patches are only for application to intact skin. Also, use only intact patches; use of damaged or cut patches can lead to a potentially fatal fentanyl dose due to rapid drug release. Serum concentrations of fentanyl could increase by approximately one-third in patients with fever more than 104 degrees F (40 degrees C) due to temperature dependent increase in fentanyl release from the transdermal system and increased skin permeability. Patients with fever who are wearing fentanyl transdermal patches should be carefully monitored for increased side effects and dosage adjustments may be necessary. Patients should avoid strenuous exertion that may increase core body temperature. Application of heat over fentanyl transdermal patches worn by healthy adults increased fentanyl mean serum concentration (Cmax) by 61% and mean systemic exposure (AUC) by 120%. Fatal overdose attributable to heat exposure has occurred. Patients should be advised to avoid exposing the transdermal application site to direct external heat sources, such as a heating pad, electric blankets, heat lamps, saunas, hot tubs, heated water beds, hot baths, sunbathing (including tanning beds and other sunlight (UV) exposure), conditions of ambient temperature increase, etc.
Ocular exposure
In order to minimize risk of ocular exposure and/or unintended topical or mucous membrane exposure during the use or disposal of fentanyl transdermal patches, nasal spray, and transmucosal dosage forms advise patients and caregivers in correct administration technique and to wash hands after handling. Thoroughly rinse exposed area (e.g., skin, eyes) with water after any accidental exposure to avoid absorption and possibility of side effects; obtain medical attention should any adverse events develop.
Dental disease, diabetes mellitus, stomatitis
Transmucosal (and/or sublingual) fentanyl products may be inappropriate for certain patients with mouth inflammation (mucous membrane stomatitis) or certain types of oral or dental disease. Such products may worsen mucous membrane pain and oral inflammation, or may increase fentanyl exposure and thus increase the risk for respiratory depression. Although stomatitis has been reported among patients receiving fentanyl oral lozenges (Actiq) or sublingual tablets (Abstral), use was not specifically studied in patients with pre-existing mucositis or stomatitis. The safety and efficacy of the buccal tablet (Fentora) and orally dissolving film (Onsolis) have not been studied in patients with mucositis more severe than Grade 1. Use of the sublingual spray (Subsys) is not recommended in patients with more severe mucositis than Grade 1 unless the benefits outweigh the potential risks; compromised mucosal integrity may increase fentanyl exposure and increased monitoring is warranted in those with Grade 1 mucositis. The Actiq brand fentanyl oral lozenge contains approximately 2 grams of sugar per unit; frequent consumption of sugar-containing products may increase the risk of dental disease, especially dental caries. The occurrence of dry mouth associated with the use of opiate agonists medications, such as fentanyl, may add to the risk. Therefore, patients using these fentanyl oral lozenges should consult their dentist to ensure appropriate oral hygiene; patients with diabetes mellitus should be advised of the sugar content in each lozenge unit.
Defibrillation (cardioversion), magnetic resonance imaging (MRI)
Because some fentanyl transdermal patches may contain aluminum or other metal components, patients should be instructed to remove the patch before undergoing magnetic resonance imaging (MRI). Metal components contained in the backing of some transdermal systems can overheat during an MRI scan and cause skin burns in the area where the patch is adhered. The iontophoretic transdermal system (Ionsys) contains metal parts and must be removed and disposed of prior to MRI scans. In the case of inadvertent exposure, monitor patients for signs of CNS or respiratory depression, as it is not known if MRI exposure increases the release of fentanyl. Remove Ionsys prior to cardioversion, defibrillation (cardioversion), X-ray, CT scan, or diathermy as electromagnetic fields in these procedures may damage the system. Radio-opaque components in Ionsys may interfere with X-ray or CT scans; interference does not occur with other electromechanical devices such as pacemakers or electrical monitoring equipment. Avoid exposing Ionsys to electronic security systems. Contact with synthetic materials (e.g., carpet) may increase the possibility of electrostatic discharge and damage. Use of Ionsys near radio frequency identification transmitters or other communications equipment may damage the system; the recommended separation distances between Ionsys and the equipment ranges from 0.12—23 meters. Recommended separation distances may be found in the FDA-approved product labeling. If exposure to these devices or procedures occur and Ionsys does not appear to function normally, remove and replace with a new system.
Infertility, reproductive risk
Chronic opioid use may influence the hypothalamic-pituitary-gonadal axis, leading to hormonal changes that may manifest as hypogonadism (gonadal suppression) and pose a reproductive risk. Although the exact causal role of opioids in the clinical manifestations of hypogonadism is unknown, patients could experience libido decrease, impotence, amenorrhea, or infertility. It is not known whether the effects on fertility are reversible. Monitor patients for symptoms of opioid-induced endocrinopathy. Patients presenting with signs or symptoms of androgen deficiency should undergo laboratory evaluation.
ADVERSE REACTIONS
Severe
hearing loss / Delayed / 0-1.0
ocular hemorrhage / Delayed / 0-1.0
oliguria / Early / 0-1.0
seizures / Delayed / 1.0
hematemesis / Delayed / 1.0
GI obstruction / Delayed / 1.0
GI bleeding / Delayed / 1.0
cardiac arrest / Early / 1.0
bradycardia / Rapid / 1.0
thrombosis / Delayed / 1.0
exfoliative dermatitis / Delayed / 2.0
pancytopenia / Delayed / 1.0
bone fractures / Delayed / 1.0
renal failure (unspecified) / Delayed / 1.0
laryngospasm / Rapid / Incidence not known
respiratory arrest / Rapid / Incidence not known
pleural effusion / Delayed / Incidence not known
pneumothorax / Early / Incidence not known
apnea / Delayed / Incidence not known
pulmonary embolism / Delayed / Incidence not known
chest wall rigidity / Rapid / Incidence not known
ileus / Delayed / Incidence not known
atrial fibrillation / Early / Incidence not known
myocardial infarction / Delayed / Incidence not known
arrhythmia exacerbation / Early / Incidence not known
skin necrosis / Early / Incidence not known
SIADH / Delayed / Incidence not known
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known
Moderate
constipation / Delayed / 0-26.0
hypokalemia / Delayed / 0-15.0
hypoventilation / Rapid / 0-4.0
respiratory depression / Rapid / 0-1.0
myoclonia / Delayed / 0-1.0
aphasia / Delayed / 0-1.0
fecal incontinence / Early / 0-1.0
angina / Early / 0-1.0
phlebitis / Rapid / 0-1.0
hot flashes / Early / 0-1.0
prolonged bleeding time / Delayed / 0-1.0
myopathy / Delayed / 0-1.0
synovitis / Delayed / 0-1.0
amblyopia / Delayed / 0-1.0
hypoglycemia / Early / 0-1.0
tolerance / Delayed / 10.0
dyspnea / Early / 1.0
amnesia / Delayed / 1.0
hallucinations / Early / 1.0
confusion / Early / 1.0
depression / Delayed / 1.0
dysphoria / Early / 1.0
migraine / Early / 1.0
peripheral neuropathy / Delayed / 1.0
dysphonia / Delayed / 1.0
euphoria / Early / 1.0
dysphagia / Delayed / 1.0
stomatitis / Delayed / 1.0
glossitis / Early / 1.0
ascites / Delayed / 1.0
gastritis / Delayed / 1.0
sinus tachycardia / Rapid / 1.0
edema / Delayed / 1.0
hypertension / Early / 1.0
peripheral edema / Delayed / 1.0
chest pain (unspecified) / Early / 1.0
hypotension / Rapid / 1.0
blurred vision / Early / 1.0
urinary retention / Early / 1.0
bleeding / Early / 1.0
skin ulcer / Delayed / 1.0
erythema / Early / 1.0
oral ulceration / Delayed / 1.0
neutropenia / Delayed / 1.0
thrombocytopenia / Delayed / 1.0
anemia / Delayed / 1.0
leukopenia / Delayed / 1.0
hyponatremia / Delayed / 1.0
impotence (erectile dysfunction) / Delayed / 1.0
bone pain / Delayed / 1.0
elevated hepatic enzymes / Delayed / 1.0
jaundice / Delayed / 1.0
dehydration / Delayed / 1.0
hyperglycemia / Delayed / 1.0
hypocalcemia / Delayed / 1.0
hypercalcemia / Delayed / 1.0
hypoalbuminemia / Delayed / 1.0
hypomagnesemia / Delayed / 1.0
candidiasis / Delayed / 1.0
lymphadenopathy / Delayed / 1.0
conjunctivitis / Delayed / 1.0
urinary incontinence / Early / 1.0
vaginitis / Delayed / 1.0
dysuria / Early / 1.0
vaginal bleeding / Delayed / 1.0
hematuria / Delayed / 1.0
hypoxia / Early / Incidence not known
hemoptysis / Delayed / Incidence not known
wheezing / Rapid / Incidence not known
impaired cognition / Early / Incidence not known
ataxia / Delayed / Incidence not known
peripheral vasodilation / Rapid / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
burns / Early / Incidence not known
hyperesthesia / Delayed / Incidence not known
skin erosion / Delayed / Incidence not known
infertility / Delayed / Incidence not known
ejaculation dysfunction / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
physiological dependence / Delayed / Incidence not known
withdrawal / Early / Incidence not known
akathisia / Delayed / Incidence not known
dystonic reaction / Delayed / Incidence not known
hyperalgesia / Delayed / Incidence not known
Mild
vomiting / Early / 0-33.0
rash / Early / 0-8.0
abnormal dreams / Early / 0-3.0
miosis / Early / 0-1.0
cheilitis / Delayed / 0-1.0
maculopapular rash / Early / 0-1.0
urticaria / Rapid / 0-1.0
skin hyperpigmentation / Delayed / 0-1.0
skin discoloration / Delayed / 0-1.0
polyuria / Early / 0-1.0
nocturia / Early / 0-1.0
bladder discomfort / Early / 0-1.0
increased urinary frequency / Early / 0-1.0
cough / Delayed / 1.0
drowsiness / Early / 1.0
tremor / Early / 1.0
malaise / Early / 1.0
hypoesthesia / Delayed / 1.0
asthenia / Delayed / 1.0
dizziness / Early / 1.0
insomnia / Early / 1.0
anxiety / Delayed / 1.0
agitation / Early / 1.0
emotional lability / Early / 1.0
vertigo / Early / 1.0
headache / Early / 1.0
fatigue / Early / 1.0
paranoia / Early / 1.0
paresthesias / Delayed / 1.0
lethargy / Early / 1.0
anorexia / Delayed / 1.0
abdominal pain / Early / 1.0
dysgeusia / Early / 1.0
dyspepsia / Early / 1.0
gastroesophageal reflux / Delayed / 1.0
eructation / Early / 1.0
flatulence / Early / 1.0
diarrhea / Early / 1.0
nausea / Early / 1.0
syncope / Early / 1.0
pallor / Early / 1.0
pruritus / Rapid / 1.0
xerophthalmia / Early / 1.0
gingivitis / Delayed / 1.0
xerostomia / Early / 1.0
nasal congestion / Early / 1.0
rhinorrhea / Early / 1.0
nasal irritation / Early / 1.0
hyperhidrosis / Delayed / 1.0
alopecia / Delayed / 1.0
night sweats / Early / 1.0
skin irritation / Early / 1.0
epistaxis / Delayed / 1.0
weakness / Early / 1.0
chills / Rapid / 1.0
muscle cramps / Delayed / 1.0
ecchymosis / Delayed / 1.0
back pain / Delayed / 1.0
fever / Early / 1.0
weight loss / Delayed / 1.0
myalgia / Early / 1.0
arthralgia / Delayed / 1.0
ptosis / Delayed / 1.0
parosmia / Delayed / 1.0
tinnitus / Delayed / 1.0
laryngitis / Delayed / 1.0
infection / Delayed / 1.0
rhinitis / Early / 1.0
sinusitis / Delayed / 1.0
influenza / Delayed / 1.0
urinary urgency / Early / 1.0
hyperventilation / Early / Incidence not known
hiccups / Early / Incidence not known
diaphoresis / Early / Incidence not known
dental caries / Delayed / Incidence not known
flushing / Rapid / Incidence not known
xerosis / Delayed / Incidence not known
vesicular rash / Delayed / Incidence not known
gonadal suppression / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
hypothermia / Delayed / Incidence not known
shivering / Rapid / Incidence not known
restlessness / Early / Incidence not known
DRUG INTERACTIONS
Acetaminophen; Aspirin; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Concomitant use of fentanyl with other CNS depressants, such as dichloralphenazone, can potentiate the effects of fentanyl on respiration, CNS depression, sedation, and hypotension.
Acetaminophen; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Guaifenesin; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Acetaminophen; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as fentanyl. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression.
Adagrasib: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of adagrasib is necessary. If adagrasib is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A substrate, and coadministration with CYP3A inhibitors like adagrasib can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If adagrasib is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Almotriptan: (Moderate) If concomitant use of fentanyl and almotriptan is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with fentanyl. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with fentanyl. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Amiodarone: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amiodarone is necessary. If amiodarone is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amiodarone can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amiodarone is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amlodipine: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Atorvastatin: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Benazepril: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Celecoxib: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Olmesartan: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Valsartan: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If amlodipine is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Amobarbital: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. If clarithromycin is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like clarithromycin can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If clarithromycin is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Amphetamines: (Moderate) If concomitant use of fentanyl and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Apalutamide: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with apalutamide is necessary. If apalutamide is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a strong CYP3A4 inducer like apalutamide with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Aprepitant, Fosaprepitant: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of a 3-day oral regimen of aprepitant is necessary. If aprepitant is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate and aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor. Coadministration can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when aprepitant is added to a stable dose of fentanyl. If aprepitant is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl. When administered as a single oral or single intravenous dose, the inhibitory effect of aprepitant on CYP3A4 is weak and did not result in a clinically significant increase in the AUC of a sensitive substrate.
Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Armodafinil: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with armodafinil is necessary. If armodafinil is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a CYP3A4 inducer like armodafinil with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Articaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Asciminib: (Minor) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of asciminib is necessary. If asciminib is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A substrate, and coadministration with CYP3A inhibitors like asciminib can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If asciminib is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of fentanyl with orphenadrine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of fentanyl with carisoprodol may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of fentanyl with carisoprodol may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Atazanavir: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like atazanavir can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If atazanavir is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Atazanavir; Cobicistat: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. If atazanavir is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like atazanavir can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If atazanavir is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl. (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. If cobicistat is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like cobicistat can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If cobicistat is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Atenolol; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Atropine: (Major) Reserve concomitant use of fentanyl and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of fentanyl in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Major) Reserve concomitant use of fentanyl and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atropine; Difenoxin: (Major) Reserve concomitant use of fentanyl and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Atropine; Edrophonium: (Major) Reserve concomitant use of fentanyl and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Avacopan: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of avacopan is necessary. If avacopan is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A substrate, and coadministration with CYP3A inhibitors like avacopan can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If avacopan is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Baclofen: (Major) Concomitant use of fentanyl with baclofen may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Barbiturates: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Belladonna; Opium: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and belladonna use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Belumosudil: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of belumosudil is necessary. If belumosudil is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A substrate, and coadministration with CYP3A inhibitors like belumosudil can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If belumosudil is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Belzutifan: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if concurrent use of belzutifan is necessary. If belzutifan is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a CYP3A inducer like belzutifan with fentanyl, a CYP3A substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bendroflumethiazide; Nadolol: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking fentanyl, reduce initial dosage and titrate to clinical response. If fentanyl is prescribed in a patient taking benzhydrocodone, use a lower initial dose of fentanyl and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and fentanyl because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of fentanyl in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Benztropine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and benztropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Berotralstat: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of berotralstat is necessary. If berotralstat is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like berotralstat can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If berotralstat is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Bexarotene: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if concurrent use of bexarotene is necessary. If bexarotene is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a CYP3A4 inducer like bexarotene with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Bicalutamide: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of bicalutamide is necessary. If bicalutamide is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like bicalutamide can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If bicalutamide is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bosentan: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with bosentan is necessary. If bosentan is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a moderate CYP3A4 inducer like bosentan with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brigatinib: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with brigatinib is necessary. If brigatinib is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a weak CYP3A4 inducer like brigatinib with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant fentanyl and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Bumetanide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and fentanyl; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Meloxicam: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for epidural analgesia or additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine: (Major) Avoid concomitant use of fentanyl and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of fentanyl and/or precipitation of withdrawal symptoms.
Buprenorphine; Naloxone: (Major) Avoid concomitant use of fentanyl and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of fentanyl and/or precipitation of withdrawal symptoms.
Bupropion: (Moderate) If concomitant use of fentanyl and bupropion is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur. (Moderate) If concomitant use of fentanyl and bupropion is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Buspirone: (Moderate) Monitor patients for signs and symptoms of serotonin syndrome during concomitant use of buspirone and fentanyl, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome.
Butabarbital: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Butalbital; Acetaminophen: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Butalbital; Acetaminophen; Caffeine: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as fentanyl. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Canakinumab: (Moderate) Monitor for evidence of reduced pain control or opioid withdrawal if fentanyl coadministration with canakinumab is necessary; fentanyl dosage adjustment may be needed. Inhibition of IL-1 signaling by canakinumab may restore CYP450 activities to higher levels leading to increased metabolism of drugs that are CYP450 substrates as compared to metabolism prior to treatment. Therefore, CYP450 substrates with a narrow therapeutic index, such as fentanyl, may have fluctuations in drug levels and therapeutic effect when canakinumab therapy is started or discontinued. This effect on CYP450 enzyme activity may persist for several weeks after stopping canakinumab. Fentanyl is a CYP3A4 substrate and narrow therapeutic index drug.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Carbamazepine: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if concurrent use of carbamazepine is necessary. If carbamazepine is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a CYP3A4 inducer like carbamazepine with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering fentanyl with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carbinoxamine; Phenylephrine: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carbinoxamine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Cariprazine: (Moderate) Concomitant use of opioid agonists like fentanyl with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carisoprodol: (Major) Concomitant use of fentanyl with carisoprodol may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Celecoxib; Tramadol: (Major) Concomitant use of tramadol with fentanyl may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cenobamate: (Moderate) Concomitant use of fentanyl with cenobamate may cause excessive sedation and somnolence. Limit the use of fentanyl with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Additionally, consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with cenobamate is necessary. If cenobamate is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a moderate CYP3A4 inducer like cenobamate with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Ceritinib: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of ceritinib is necessary. If ceritinib is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like ceritinib can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If ceritinib is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chloramphenicol: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of chloramphenicol is necessary. If chloramphenicol is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like chloramphenicol can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If chloramphenicol is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl.
Chlorcyclizine: